Metamath Proof Explorer


Theorem cmn12

Description: Commutative/associative law for Abelian monoids. (Contributed by Stefan O'Rear, 5-Sep-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablcom.b 𝐵 = ( Base ‘ 𝐺 )
ablcom.p + = ( +g𝐺 )
Assertion cmn12 ( ( 𝐺 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 ablcom.b 𝐵 = ( Base ‘ 𝐺 )
2 ablcom.p + = ( +g𝐺 )
3 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
4 3 adantr ( ( 𝐺 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐺 ∈ Mnd )
5 simpr1 ( ( 𝐺 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
6 simpr2 ( ( 𝐺 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
7 simpr3 ( ( 𝐺 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
8 1 2 cmncom ( ( 𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
9 8 3adant3r3 ( ( 𝐺 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
10 1 2 4 5 6 7 9 mnd12g ( ( 𝐺 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) )