Step |
Hyp |
Ref |
Expression |
1 |
|
cmn135246.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cmn135246.2 |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
cmn135246.3 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
cmn135246.5 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
cmn135246.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
cmn135246.6 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
cmn135246.7 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
8 |
|
cmn135246.8 |
⊢ ( 𝜑 → 𝑉 ∈ 𝐵 ) |
9 |
|
cmn135246.9 |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
10 |
1 2
|
cmncom |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵 ) → ( 𝑍 + 𝑈 ) = ( 𝑈 + 𝑍 ) ) |
11 |
3 6 7 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝑍 + 𝑈 ) = ( 𝑈 + 𝑍 ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑍 + 𝑈 ) + ( 𝑉 + 𝑊 ) ) = ( ( 𝑈 + 𝑍 ) + ( 𝑉 + 𝑊 ) ) ) |
13 |
1 2 3 7 6 8 9
|
cmn4d |
⊢ ( 𝜑 → ( ( 𝑈 + 𝑍 ) + ( 𝑉 + 𝑊 ) ) = ( ( 𝑈 + 𝑉 ) + ( 𝑍 + 𝑊 ) ) ) |
14 |
12 13
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑍 + 𝑈 ) + ( 𝑉 + 𝑊 ) ) = ( ( 𝑈 + 𝑉 ) + ( 𝑍 + 𝑊 ) ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + ( ( 𝑍 + 𝑈 ) + ( 𝑉 + 𝑊 ) ) ) = ( ( 𝑋 + 𝑌 ) + ( ( 𝑈 + 𝑉 ) + ( 𝑍 + 𝑊 ) ) ) ) |
16 |
3
|
cmnmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
17 |
1 2
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑈 + 𝑉 ) ∈ 𝐵 ) |
18 |
16 7 8 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 + 𝑉 ) ∈ 𝐵 ) |
19 |
1 2
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
20 |
16 6 9 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
21 |
1 2 3 4 18 5 20
|
cmn4d |
⊢ ( 𝜑 → ( ( 𝑋 + ( 𝑈 + 𝑉 ) ) + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) = ( ( 𝑋 + 𝑌 ) + ( ( 𝑈 + 𝑉 ) + ( 𝑍 + 𝑊 ) ) ) ) |
22 |
15 21
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + ( ( 𝑍 + 𝑈 ) + ( 𝑉 + 𝑊 ) ) ) = ( ( 𝑋 + ( 𝑈 + 𝑉 ) ) + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) ) |