| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmnbascntr.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cmnbascntr.z | ⊢ 𝑍  =  ( Cntr ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 ) | 
						
							| 4 | 1 3 | cntrval | ⊢ ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 )  =  ( Cntr ‘ 𝐺 ) | 
						
							| 5 |  | ssid | ⊢ 𝐵  ⊆  𝐵 | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 7 | 1 6 3 | cntzval | ⊢ ( 𝐵  ⊆  𝐵  →  ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 )  =  { 𝑥  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) } ) | 
						
							| 8 | 5 7 | ax-mp | ⊢ ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 )  =  { 𝑥  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) } | 
						
							| 9 | 2 4 8 | 3eqtr2i | ⊢ 𝑍  =  { 𝑥  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) } | 
						
							| 10 | 1 6 | cmncom | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 11 | 10 | 3expa | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑥  ∈  𝐵 )  →  ∀ 𝑦  ∈  𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 13 | 12 | rabeqcda | ⊢ ( 𝐺  ∈  CMnd  →  { 𝑥  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) }  =  𝐵 ) | 
						
							| 14 | 9 13 | eqtr2id | ⊢ ( 𝐺  ∈  CMnd  →  𝐵  =  𝑍 ) |