Metamath Proof Explorer


Theorem cmnbascntr

Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses cmnbascntr.b 𝐵 = ( Base ‘ 𝐺 )
cmnbascntr.z 𝑍 = ( Cntr ‘ 𝐺 )
Assertion cmnbascntr ( 𝐺 ∈ CMnd → 𝐵 = 𝑍 )

Proof

Step Hyp Ref Expression
1 cmnbascntr.b 𝐵 = ( Base ‘ 𝐺 )
2 cmnbascntr.z 𝑍 = ( Cntr ‘ 𝐺 )
3 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
4 1 3 cntrval ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) = ( Cntr ‘ 𝐺 )
5 ssid 𝐵𝐵
6 eqid ( +g𝐺 ) = ( +g𝐺 )
7 1 6 3 cntzval ( 𝐵𝐵 → ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) = { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) } )
8 5 7 ax-mp ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) = { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) }
9 2 4 8 3eqtr2i 𝑍 = { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) }
10 1 6 cmncom ( ( 𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
11 10 3expa ( ( ( 𝐺 ∈ CMnd ∧ 𝑥𝐵 ) ∧ 𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
12 11 ralrimiva ( ( 𝐺 ∈ CMnd ∧ 𝑥𝐵 ) → ∀ 𝑦𝐵 ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
13 12 rabeqcda ( 𝐺 ∈ CMnd → { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) } = 𝐵 )
14 9 13 eqtr2id ( 𝐺 ∈ CMnd → 𝐵 = 𝑍 )