Step |
Hyp |
Ref |
Expression |
1 |
|
ablcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablcom.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
1 2
|
iscmn |
⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐺 ∈ CMnd → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
5 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
6 |
5
|
imp |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
7 |
4 6
|
sylan |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
8 |
7
|
caovcomg |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
9 |
8
|
3impb |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |