Metamath Proof Explorer


Theorem cmntrcld

Description: The complement of an interior is closed. (Contributed by NM, 1-Oct-2007) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion cmntrcld ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 1 ntropn ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 )
3 1 opncld ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ ( Clsd ‘ 𝐽 ) )
4 2 3 syldan ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ ( Clsd ‘ 𝐽 ) )