Metamath Proof Explorer
		
		
		
		Description:  The complement of an interior is closed.  (Contributed by NM, 1-Oct-2007)  (Proof shortened by OpenAI, 3-Jul-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | clscld.1 | ⊢ 𝑋  =  ∪  𝐽 | 
				
					|  | Assertion | cmntrcld | ⊢  ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | ntropn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ∈  𝐽 ) | 
						
							| 3 | 1 | opncld | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ∈  𝐽 )  →  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 4 | 2 3 | syldan | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )  ∈  ( Clsd ‘ 𝐽 ) ) |