Metamath Proof Explorer
Description: The complement of an interior is closed. (Contributed by NM, 1-Oct-2007) (Proof shortened by OpenAI, 3-Jul-2020)
|
|
Ref |
Expression |
|
Hypothesis |
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
|
Assertion |
cmntrcld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
3 |
1
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
4 |
2 3
|
syldan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |