| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cmodscexp.f | 
							⊢ 𝐹  =  ( Scalar ‘ 𝑊 )  | 
						
						
							| 2 | 
							
								
							 | 
							cmodscexp.k | 
							⊢ 𝐾  =  ( Base ‘ 𝐹 )  | 
						
						
							| 3 | 
							
								
							 | 
							ax-icn | 
							⊢ i  ∈  ℂ  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							⊢ ( ( 𝑊  ∈  ℂMod  ∧  i  ∈  𝐾 )  →  i  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 6 | 
							
								
							 | 
							cnfldexp | 
							⊢ ( ( i  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i )  =  ( i ↑ 𝑁 ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							syl2an | 
							⊢ ( ( ( 𝑊  ∈  ℂMod  ∧  i  ∈  𝐾 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i )  =  ( i ↑ 𝑁 ) )  | 
						
						
							| 8 | 
							
								1 2
							 | 
							clmsubrg | 
							⊢ ( 𝑊  ∈  ℂMod  →  𝐾  ∈  ( SubRing ‘ ℂfld ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld )  | 
						
						
							| 10 | 
							
								9
							 | 
							subrgsubm | 
							⊢ ( 𝐾  ∈  ( SubRing ‘ ℂfld )  →  𝐾  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							syl | 
							⊢ ( 𝑊  ∈  ℂMod  →  𝐾  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑊  ∈  ℂMod  ∧  i  ∈  𝐾 )  ∧  𝑁  ∈  ℕ )  →  𝐾  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) )  | 
						
						
							| 13 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( ( 𝑊  ∈  ℂMod  ∧  i  ∈  𝐾 )  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 14 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝑊  ∈  ℂMod  ∧  i  ∈  𝐾 )  ∧  𝑁  ∈  ℕ )  →  i  ∈  𝐾 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) )  =  ( .g ‘ ( mulGrp ‘ ℂfld ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							submmulgcl | 
							⊢ ( ( 𝐾  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) )  ∧  𝑁  ∈  ℕ0  ∧  i  ∈  𝐾 )  →  ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i )  ∈  𝐾 )  | 
						
						
							| 17 | 
							
								12 13 14 16
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑊  ∈  ℂMod  ∧  i  ∈  𝐾 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i )  ∈  𝐾 )  | 
						
						
							| 18 | 
							
								7 17
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝑊  ∈  ℂMod  ∧  i  ∈  𝐾 )  ∧  𝑁  ∈  ℕ )  →  ( i ↑ 𝑁 )  ∈  𝐾 )  |