Metamath Proof Explorer


Theorem cmodscexp

Description: The powers of _i belong to the scalar subring of a subcomplex module if _i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021)

Ref Expression
Hypotheses cmodscexp.f 𝐹 = ( Scalar ‘ 𝑊 )
cmodscexp.k 𝐾 = ( Base ‘ 𝐹 )
Assertion cmodscexp ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( i ↑ 𝑁 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 cmodscexp.f 𝐹 = ( Scalar ‘ 𝑊 )
2 cmodscexp.k 𝐾 = ( Base ‘ 𝐹 )
3 ax-icn i ∈ ℂ
4 3 a1i ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) → i ∈ ℂ )
5 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
6 cnfldexp ( ( i ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) = ( i ↑ 𝑁 ) )
7 4 5 6 syl2an ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) = ( i ↑ 𝑁 ) )
8 1 2 clmsubrg ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
9 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
10 9 subrgsubm ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) )
11 8 10 syl ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) )
12 11 ad2antrr ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) )
13 5 adantl ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 )
14 simplr ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → i ∈ 𝐾 )
15 eqid ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) )
16 15 submmulgcl ( ( 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ 𝑁 ∈ ℕ0 ∧ i ∈ 𝐾 ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) ∈ 𝐾 )
17 12 13 14 16 syl3anc ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) ∈ 𝐾 )
18 7 17 eqeltrrd ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( i ↑ 𝑁 ) ∈ 𝐾 )