| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cmodscexp.f | 
							⊢ 𝐹  =  ( Scalar ‘ 𝑊 )  | 
						
						
							| 2 | 
							
								
							 | 
							cmodscexp.k | 
							⊢ 𝐾  =  ( Base ‘ 𝐹 )  | 
						
						
							| 3 | 
							
								
							 | 
							cmodscmulexp.x | 
							⊢ 𝑋  =  ( Base ‘ 𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							cmodscmulexp.s | 
							⊢  ·   =  (  ·𝑠  ‘ 𝑊 )  | 
						
						
							| 5 | 
							
								
							 | 
							clmlmod | 
							⊢ ( 𝑊  ∈  ℂMod  →  𝑊  ∈  LMod )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( i  ∈  𝐾  ∧  𝐵  ∈  𝑋  ∧  𝑁  ∈  ℕ ) )  →  𝑊  ∈  LMod )  | 
						
						
							| 7 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( i  ∈  𝐾  ∧  𝐵  ∈  𝑋  ∧  𝑁  ∈  ℕ )  →  i  ∈  𝐾 )  | 
						
						
							| 8 | 
							
								7
							 | 
							anim2i | 
							⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( i  ∈  𝐾  ∧  𝐵  ∈  𝑋  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑊  ∈  ℂMod  ∧  i  ∈  𝐾 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( i  ∈  𝐾  ∧  𝐵  ∈  𝑋  ∧  𝑁  ∈  ℕ ) )  →  𝑁  ∈  ℕ )  | 
						
						
							| 10 | 
							
								1 2
							 | 
							cmodscexp | 
							⊢ ( ( ( 𝑊  ∈  ℂMod  ∧  i  ∈  𝐾 )  ∧  𝑁  ∈  ℕ )  →  ( i ↑ 𝑁 )  ∈  𝐾 )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							syl2anc | 
							⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( i  ∈  𝐾  ∧  𝐵  ∈  𝑋  ∧  𝑁  ∈  ℕ ) )  →  ( i ↑ 𝑁 )  ∈  𝐾 )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( i  ∈  𝐾  ∧  𝐵  ∈  𝑋  ∧  𝑁  ∈  ℕ ) )  →  𝐵  ∈  𝑋 )  | 
						
						
							| 13 | 
							
								3 1 4 2
							 | 
							lmodvscl | 
							⊢ ( ( 𝑊  ∈  LMod  ∧  ( i ↑ 𝑁 )  ∈  𝐾  ∧  𝐵  ∈  𝑋 )  →  ( ( i ↑ 𝑁 )  ·  𝐵 )  ∈  𝑋 )  | 
						
						
							| 14 | 
							
								6 11 12 13
							 | 
							syl3anc | 
							⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( i  ∈  𝐾  ∧  𝐵  ∈  𝑋  ∧  𝑁  ∈  ℕ ) )  →  ( ( i ↑ 𝑁 )  ·  𝐵 )  ∈  𝑋 )  |