| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcmpcmet.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
relcmpcmet.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 3 |
|
cmpcmet.3 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 4 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ Comp ) |
| 7 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 10 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 13 |
|
rpxr |
⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) |
| 14 |
4 13
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℝ* ) |
| 15 |
|
blssm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) |
| 16 |
9 12 14 15
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) |
| 17 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 18 |
9 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 19 |
16 18
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ∪ 𝐽 ) |
| 20 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 21 |
20
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 22 |
11 19 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 23 |
|
cmpcld |
⊢ ( ( 𝐽 ∈ Comp ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ) |
| 24 |
6 22 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ) |
| 25 |
1 2 5 24
|
relcmpcmet |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |