Step |
Hyp |
Ref |
Expression |
1 |
|
iscmp.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
unieq |
⊢ ( 𝑟 = 𝑆 → ∪ 𝑟 = ∪ 𝑆 ) |
3 |
2
|
eqeq2d |
⊢ ( 𝑟 = 𝑆 → ( 𝑋 = ∪ 𝑟 ↔ 𝑋 = ∪ 𝑆 ) ) |
4 |
|
pweq |
⊢ ( 𝑟 = 𝑆 → 𝒫 𝑟 = 𝒫 𝑆 ) |
5 |
4
|
ineq1d |
⊢ ( 𝑟 = 𝑆 → ( 𝒫 𝑟 ∩ Fin ) = ( 𝒫 𝑆 ∩ Fin ) ) |
6 |
5
|
rexeqdv |
⊢ ( 𝑟 = 𝑆 → ( ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ↔ ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
7 |
3 6
|
imbi12d |
⊢ ( 𝑟 = 𝑆 → ( ( 𝑋 = ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ↔ ( 𝑋 = ∪ 𝑆 → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) ) |
8 |
1
|
iscmp |
⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) ) |
9 |
8
|
simprbi |
⊢ ( 𝐽 ∈ Comp → ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
11 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ 𝐽 ∧ 𝐽 ∈ Comp ) → 𝑆 ∈ V ) |
12 |
11
|
ancoms |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → 𝑆 ∈ V ) |
13 |
|
simpr |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → 𝑆 ⊆ 𝐽 ) |
14 |
12 13
|
elpwd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → 𝑆 ∈ 𝒫 𝐽 ) |
15 |
7 10 14
|
rspcdva |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → ( 𝑋 = ∪ 𝑆 → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
16 |
15
|
3impia |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆 ) → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = ∪ 𝑠 ) |