| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmpfiiin.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | cmpfiiin.j | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 3 |  | cmpfiiin.s | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝑆  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 4 |  | cmpfiiin.z | ⊢ ( ( 𝜑  ∧  ( 𝑙  ⊆  𝐼  ∧  𝑙  ∈  Fin ) )  →  ( 𝑋  ∩  ∩  𝑘  ∈  𝑙 𝑆 )  ≠  ∅ ) | 
						
							| 5 |  | cmptop | ⊢ ( 𝐽  ∈  Comp  →  𝐽  ∈  Top ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 7 | 1 | topcld | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 9 | 1 | cldss | ⊢ ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 10 | 3 9 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 11 | 10 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐼 𝑆  ⊆  𝑋 ) | 
						
							| 12 |  | riinint | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ∀ 𝑘  ∈  𝐼 𝑆  ⊆  𝑋 )  →  ( 𝑋  ∩  ∩  𝑘  ∈  𝐼 𝑆 )  =  ∩  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) ) ) | 
						
							| 13 | 8 11 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ∩  ∩  𝑘  ∈  𝐼 𝑆 )  =  ∩  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) ) ) | 
						
							| 14 | 8 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  ( Clsd ‘ 𝐽 ) ) | 
						
							| 15 | 3 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐼  ↦  𝑆 ) : 𝐼 ⟶ ( Clsd ‘ 𝐽 ) ) | 
						
							| 16 | 15 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 )  ⊆  ( Clsd ‘ 𝐽 ) ) | 
						
							| 17 | 14 16 | unssd | ⊢ ( 𝜑  →  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) )  ⊆  ( Clsd ‘ 𝐽 ) ) | 
						
							| 18 |  | elin | ⊢ ( 𝑙  ∈  ( 𝒫  𝐼  ∩  Fin )  ↔  ( 𝑙  ∈  𝒫  𝐼  ∧  𝑙  ∈  Fin ) ) | 
						
							| 19 |  | elpwi | ⊢ ( 𝑙  ∈  𝒫  𝐼  →  𝑙  ⊆  𝐼 ) | 
						
							| 20 | 19 | anim1i | ⊢ ( ( 𝑙  ∈  𝒫  𝐼  ∧  𝑙  ∈  Fin )  →  ( 𝑙  ⊆  𝐼  ∧  𝑙  ∈  Fin ) ) | 
						
							| 21 | 18 20 | sylbi | ⊢ ( 𝑙  ∈  ( 𝒫  𝐼  ∩  Fin )  →  ( 𝑙  ⊆  𝐼  ∧  𝑙  ∈  Fin ) ) | 
						
							| 22 |  | nesym | ⊢ ( ( 𝑋  ∩  ∩  𝑘  ∈  𝑙 𝑆 )  ≠  ∅  ↔  ¬  ∅  =  ( 𝑋  ∩  ∩  𝑘  ∈  𝑙 𝑆 ) ) | 
						
							| 23 | 4 22 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑙  ⊆  𝐼  ∧  𝑙  ∈  Fin ) )  →  ¬  ∅  =  ( 𝑋  ∩  ∩  𝑘  ∈  𝑙 𝑆 ) ) | 
						
							| 24 | 21 23 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ( 𝒫  𝐼  ∩  Fin ) )  →  ¬  ∅  =  ( 𝑋  ∩  ∩  𝑘  ∈  𝑙 𝑆 ) ) | 
						
							| 25 | 24 | nrexdv | ⊢ ( 𝜑  →  ¬  ∃ 𝑙  ∈  ( 𝒫  𝐼  ∩  Fin ) ∅  =  ( 𝑋  ∩  ∩  𝑘  ∈  𝑙 𝑆 ) ) | 
						
							| 26 |  | elrfirn2 | ⊢ ( ( 𝑋  ∈  ( Clsd ‘ 𝐽 )  ∧  ∀ 𝑘  ∈  𝐼 𝑆  ⊆  𝑋 )  →  ( ∅  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) ) )  ↔  ∃ 𝑙  ∈  ( 𝒫  𝐼  ∩  Fin ) ∅  =  ( 𝑋  ∩  ∩  𝑘  ∈  𝑙 𝑆 ) ) ) | 
						
							| 27 | 8 11 26 | syl2anc | ⊢ ( 𝜑  →  ( ∅  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) ) )  ↔  ∃ 𝑙  ∈  ( 𝒫  𝐼  ∩  Fin ) ∅  =  ( 𝑋  ∩  ∩  𝑘  ∈  𝑙 𝑆 ) ) ) | 
						
							| 28 | 25 27 | mtbird | ⊢ ( 𝜑  →  ¬  ∅  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) ) ) ) | 
						
							| 29 |  | cmpfii | ⊢ ( ( 𝐽  ∈  Comp  ∧  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) )  ⊆  ( Clsd ‘ 𝐽 )  ∧  ¬  ∅  ∈  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) ) ) )  →  ∩  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) )  ≠  ∅ ) | 
						
							| 30 | 2 17 28 29 | syl3anc | ⊢ ( 𝜑  →  ∩  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐼  ↦  𝑆 ) )  ≠  ∅ ) | 
						
							| 31 | 13 30 | eqnetrd | ⊢ ( 𝜑  →  ( 𝑋  ∩  ∩  𝑘  ∈  𝐼 𝑆 )  ≠  ∅ ) |