Metamath Proof Explorer


Theorem cmpfiiin

Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypotheses cmpfiiin.x 𝑋 = 𝐽
cmpfiiin.j ( 𝜑𝐽 ∈ Comp )
cmpfiiin.s ( ( 𝜑𝑘𝐼 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) )
cmpfiiin.z ( ( 𝜑 ∧ ( 𝑙𝐼𝑙 ∈ Fin ) ) → ( 𝑋 𝑘𝑙 𝑆 ) ≠ ∅ )
Assertion cmpfiiin ( 𝜑 → ( 𝑋 𝑘𝐼 𝑆 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 cmpfiiin.x 𝑋 = 𝐽
2 cmpfiiin.j ( 𝜑𝐽 ∈ Comp )
3 cmpfiiin.s ( ( 𝜑𝑘𝐼 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) )
4 cmpfiiin.z ( ( 𝜑 ∧ ( 𝑙𝐼𝑙 ∈ Fin ) ) → ( 𝑋 𝑘𝑙 𝑆 ) ≠ ∅ )
5 cmptop ( 𝐽 ∈ Comp → 𝐽 ∈ Top )
6 2 5 syl ( 𝜑𝐽 ∈ Top )
7 1 topcld ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) )
8 6 7 syl ( 𝜑𝑋 ∈ ( Clsd ‘ 𝐽 ) )
9 1 cldss ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆𝑋 )
10 3 9 syl ( ( 𝜑𝑘𝐼 ) → 𝑆𝑋 )
11 10 ralrimiva ( 𝜑 → ∀ 𝑘𝐼 𝑆𝑋 )
12 riinint ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → ( 𝑋 𝑘𝐼 𝑆 ) = ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) )
13 8 11 12 syl2anc ( 𝜑 → ( 𝑋 𝑘𝐼 𝑆 ) = ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) )
14 8 snssd ( 𝜑 → { 𝑋 } ⊆ ( Clsd ‘ 𝐽 ) )
15 3 fmpttd ( 𝜑 → ( 𝑘𝐼𝑆 ) : 𝐼 ⟶ ( Clsd ‘ 𝐽 ) )
16 15 frnd ( 𝜑 → ran ( 𝑘𝐼𝑆 ) ⊆ ( Clsd ‘ 𝐽 ) )
17 14 16 unssd ( 𝜑 → ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) ⊆ ( Clsd ‘ 𝐽 ) )
18 elin ( 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ↔ ( 𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin ) )
19 elpwi ( 𝑙 ∈ 𝒫 𝐼𝑙𝐼 )
20 19 anim1i ( ( 𝑙 ∈ 𝒫 𝐼𝑙 ∈ Fin ) → ( 𝑙𝐼𝑙 ∈ Fin ) )
21 18 20 sylbi ( 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) → ( 𝑙𝐼𝑙 ∈ Fin ) )
22 nesym ( ( 𝑋 𝑘𝑙 𝑆 ) ≠ ∅ ↔ ¬ ∅ = ( 𝑋 𝑘𝑙 𝑆 ) )
23 4 22 sylib ( ( 𝜑 ∧ ( 𝑙𝐼𝑙 ∈ Fin ) ) → ¬ ∅ = ( 𝑋 𝑘𝑙 𝑆 ) )
24 21 23 sylan2 ( ( 𝜑𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ¬ ∅ = ( 𝑋 𝑘𝑙 𝑆 ) )
25 24 nrexdv ( 𝜑 → ¬ ∃ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ∅ = ( 𝑋 𝑘𝑙 𝑆 ) )
26 elrfirn2 ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∀ 𝑘𝐼 𝑆𝑋 ) → ( ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ∅ = ( 𝑋 𝑘𝑙 𝑆 ) ) )
27 8 11 26 syl2anc ( 𝜑 → ( ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ∅ = ( 𝑋 𝑘𝑙 𝑆 ) ) )
28 25 27 mtbird ( 𝜑 → ¬ ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) ) )
29 cmpfii ( ( 𝐽 ∈ Comp ∧ ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) ⊆ ( Clsd ‘ 𝐽 ) ∧ ¬ ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) ) ) → ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) ≠ ∅ )
30 2 17 28 29 syl3anc ( 𝜑 ( { 𝑋 } ∪ ran ( 𝑘𝐼𝑆 ) ) ≠ ∅ )
31 13 30 eqnetrd ( 𝜑 → ( 𝑋 𝑘𝐼 𝑆 ) ≠ ∅ )