| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmpidelt.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
cmpidelt.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
| 3 |
1 2
|
idrval |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝑈 = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 4 |
3
|
eqcomd |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) = 𝑈 ) |
| 5 |
1 2
|
iorlid |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝑈 ∈ 𝑋 ) |
| 6 |
1
|
exidu1 |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 𝐺 𝑥 ) = ( 𝑈 𝐺 𝑥 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝑥 ) = 𝑥 ) ) |
| 9 |
8
|
ovanraleqv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) ) |
| 10 |
9
|
riota2 |
⊢ ( ( 𝑈 ∈ 𝑋 ∧ ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ↔ ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) = 𝑈 ) ) |
| 11 |
5 6 10
|
syl2anc |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ↔ ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) = 𝑈 ) ) |
| 12 |
4 11
|
mpbird |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 𝐴 ) ) |
| 14 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝐴 ) = 𝐴 ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑈 ) = ( 𝐴 𝐺 𝑈 ) ) |
| 17 |
16 14
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑈 ) = 𝑥 ↔ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) |
| 18 |
15 17
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) ) |
| 19 |
18
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) |
| 20 |
12 19
|
sylan |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) |