| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 2 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐽 ∈ Top ) |
| 4 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∪ 𝐽 ∈ 𝐽 ) |
| 6 |
|
simpr |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ ∪ 𝐽 ) |
| 7 |
6
|
snssd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → { 𝑥 } ⊆ ∪ 𝐽 ) |
| 8 |
|
opnneiss |
⊢ ( ( 𝐽 ∈ Top ∧ ∪ 𝐽 ∈ 𝐽 ∧ { 𝑥 } ⊆ ∪ 𝐽 ) → ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 9 |
3 5 7 8
|
syl3anc |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 10 |
1
|
restid |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∪ 𝐽 ) = 𝐽 ) |
| 11 |
3 10
|
syl |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝐽 ↾t ∪ 𝐽 ) = 𝐽 ) |
| 12 |
|
simpl |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐽 ∈ Comp ) |
| 13 |
11 12
|
eqeltrd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝐽 ↾t ∪ 𝐽 ) ∈ Comp ) |
| 14 |
|
oveq2 |
⊢ ( 𝑘 = ∪ 𝐽 → ( 𝐽 ↾t 𝑘 ) = ( 𝐽 ↾t ∪ 𝐽 ) ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑘 = ∪ 𝐽 → ( ( 𝐽 ↾t 𝑘 ) ∈ Comp ↔ ( 𝐽 ↾t ∪ 𝐽 ) ∈ Comp ) ) |
| 16 |
15
|
rspcev |
⊢ ( ( ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝐽 ↾t ∪ 𝐽 ) ∈ Comp ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽 ↾t 𝑘 ) ∈ Comp ) |
| 17 |
9 13 16
|
syl2anc |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽 ↾t 𝑘 ) ∈ Comp ) |
| 18 |
1 2 17
|
llycmpkgen2 |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen ) |