Step |
Hyp |
Ref |
Expression |
1 |
|
cmpsub.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
rabexg |
⊢ ( 𝐽 ∈ Top → { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ V ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ V ) |
4 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ⊆ 𝐽 |
5 |
|
elpwg |
⊢ ( { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ V → ( { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ 𝒫 𝐽 ↔ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ⊆ 𝐽 ) ) |
6 |
4 5
|
mpbiri |
⊢ ( { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ V → { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ 𝒫 𝐽 ) |
7 |
3 6
|
syl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ 𝒫 𝐽 ) |
8 |
|
unieq |
⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∪ 𝑐 = ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) |
9 |
8
|
sseq2d |
⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑆 ⊆ ∪ 𝑐 ↔ 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
10 |
|
pweq |
⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → 𝒫 𝑐 = 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) |
11 |
10
|
ineq1d |
⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝒫 𝑐 ∩ Fin ) = ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) ) |
12 |
11
|
rexeqdv |
⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ↔ ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
13 |
9 12
|
imbi12d |
⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ↔ ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
14 |
13
|
rspcva |
⊢ ( ( { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ 𝒫 𝐽 ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) → ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
15 |
7 14
|
sylan |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) → ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
16 |
15
|
ex |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
17 |
1
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
19 |
18
|
eqeq1d |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( 𝑆 = ∪ 𝑠 ↔ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 ) ) |
20 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ↔ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) |
21 |
|
eleq2 |
⊢ ( 𝑆 = ∪ 𝑠 → ( 𝑡 ∈ 𝑆 ↔ 𝑡 ∈ ∪ 𝑠 ) ) |
22 |
|
eluni |
⊢ ( 𝑡 ∈ ∪ 𝑠 ↔ ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) ) |
23 |
21 22
|
bitrdi |
⊢ ( 𝑆 = ∪ 𝑠 → ( 𝑡 ∈ 𝑆 ↔ ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑡 ∈ 𝑆 ↔ ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) ) ) |
25 |
|
ssel |
⊢ ( 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) → ( 𝑢 ∈ 𝑠 → 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) ) ) |
26 |
1
|
sseq2i |
⊢ ( 𝑆 ⊆ 𝑋 ↔ 𝑆 ⊆ ∪ 𝐽 ) |
27 |
|
uniexg |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) |
28 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ∪ 𝐽 ∧ ∪ 𝐽 ∈ V ) → 𝑆 ∈ V ) |
29 |
28
|
ancoms |
⊢ ( ( ∪ 𝐽 ∈ V ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ∈ V ) |
30 |
27 29
|
sylan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ∈ V ) |
31 |
26 30
|
sylan2b |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ V ) |
32 |
|
elrest |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) ↔ ∃ 𝑤 ∈ 𝐽 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ) |
33 |
31 32
|
syldan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) ↔ ∃ 𝑤 ∈ 𝐽 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ) |
34 |
|
inss1 |
⊢ ( 𝑤 ∩ 𝑆 ) ⊆ 𝑤 |
35 |
|
sseq1 |
⊢ ( 𝑢 = ( 𝑤 ∩ 𝑆 ) → ( 𝑢 ⊆ 𝑤 ↔ ( 𝑤 ∩ 𝑆 ) ⊆ 𝑤 ) ) |
36 |
34 35
|
mpbiri |
⊢ ( 𝑢 = ( 𝑤 ∩ 𝑆 ) → 𝑢 ⊆ 𝑤 ) |
37 |
36
|
sselda |
⊢ ( ( 𝑢 = ( 𝑤 ∩ 𝑆 ) ∧ 𝑡 ∈ 𝑢 ) → 𝑡 ∈ 𝑤 ) |
38 |
37
|
3ad2antl3 |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑡 ∈ 𝑢 ) → 𝑡 ∈ 𝑤 ) |
39 |
38
|
3adant2 |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → 𝑡 ∈ 𝑤 ) |
40 |
|
ineq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∩ 𝑆 ) = ( 𝑤 ∩ 𝑆 ) ) |
41 |
40
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 ↔ ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) ) |
42 |
|
simp12 |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → 𝑤 ∈ 𝐽 ) |
43 |
|
eleq1 |
⊢ ( 𝑢 = ( 𝑤 ∩ 𝑆 ) → ( 𝑢 ∈ 𝑠 ↔ ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) ) |
44 |
43
|
biimpa |
⊢ ( ( 𝑢 = ( 𝑤 ∩ 𝑆 ) ∧ 𝑢 ∈ 𝑠 ) → ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) |
45 |
44
|
3ad2antl3 |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ) → ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) |
46 |
45
|
3adant3 |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) |
47 |
41 42 46
|
elrabd |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → 𝑤 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) |
48 |
|
vex |
⊢ 𝑤 ∈ V |
49 |
|
eleq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝑡 ∈ 𝑣 ↔ 𝑡 ∈ 𝑤 ) ) |
50 |
|
eleq1 |
⊢ ( 𝑣 = 𝑤 → ( 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ↔ 𝑤 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
51 |
49 50
|
anbi12d |
⊢ ( 𝑣 = 𝑤 → ( ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ↔ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
52 |
48 51
|
spcev |
⊢ ( ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
53 |
39 47 52
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
54 |
53
|
3exp |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) → ( 𝑢 ∈ 𝑠 → ( 𝑡 ∈ 𝑢 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) |
55 |
54
|
rexlimdv3a |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑤 ∈ 𝐽 𝑢 = ( 𝑤 ∩ 𝑆 ) → ( 𝑢 ∈ 𝑠 → ( 𝑡 ∈ 𝑢 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
56 |
33 55
|
sylbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) → ( 𝑢 ∈ 𝑠 → ( 𝑡 ∈ 𝑢 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
57 |
56
|
com23 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑢 ∈ 𝑠 → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) → ( 𝑡 ∈ 𝑢 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
58 |
57
|
com4l |
⊢ ( 𝑢 ∈ 𝑠 → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) → ( 𝑡 ∈ 𝑢 → ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
59 |
25 58
|
sylcom |
⊢ ( 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) → ( 𝑢 ∈ 𝑠 → ( 𝑡 ∈ 𝑢 → ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
60 |
59
|
com24 |
⊢ ( 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) → ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑡 ∈ 𝑢 → ( 𝑢 ∈ 𝑠 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
61 |
60
|
impcom |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) → ( 𝑡 ∈ 𝑢 → ( 𝑢 ∈ 𝑠 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) |
62 |
61
|
impd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) → ( ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
63 |
62
|
exlimdv |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) → ( ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
64 |
63
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
65 |
24 64
|
sylbid |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑡 ∈ 𝑆 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
66 |
65
|
ex |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) → ( 𝑆 = ∪ 𝑠 → ( 𝑡 ∈ 𝑆 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) |
67 |
20 66
|
sylan2b |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( 𝑆 = ∪ 𝑠 → ( 𝑡 ∈ 𝑆 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) |
68 |
67
|
imp |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑡 ∈ 𝑆 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
69 |
|
eluni |
⊢ ( 𝑡 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ↔ ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
70 |
68 69
|
syl6ibr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑡 ∈ 𝑆 → 𝑡 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
71 |
70
|
ssrdv |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) |
72 |
|
pm2.27 |
⊢ ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
73 |
|
elin |
⊢ ( 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) ↔ ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ) |
74 |
|
vex |
⊢ 𝑡 ∈ V |
75 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 = ( 𝑧 ∩ 𝑆 ) ↔ 𝑡 = ( 𝑧 ∩ 𝑆 ) ) ) |
76 |
75
|
rexbidv |
⊢ ( 𝑥 = 𝑡 → ( ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) ↔ ∃ 𝑧 ∈ 𝑑 𝑡 = ( 𝑧 ∩ 𝑆 ) ) ) |
77 |
74 76
|
elab |
⊢ ( 𝑡 ∈ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ↔ ∃ 𝑧 ∈ 𝑑 𝑡 = ( 𝑧 ∩ 𝑆 ) ) |
78 |
|
velpw |
⊢ ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ↔ 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) |
79 |
|
ssel |
⊢ ( 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑧 ∈ 𝑑 → 𝑧 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
80 |
|
ineq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∩ 𝑆 ) = ( 𝑧 ∩ 𝑆 ) ) |
81 |
80
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 ↔ ( 𝑧 ∩ 𝑆 ) ∈ 𝑠 ) ) |
82 |
81
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ↔ ( 𝑧 ∈ 𝐽 ∧ ( 𝑧 ∩ 𝑆 ) ∈ 𝑠 ) ) |
83 |
|
eleq1a |
⊢ ( ( 𝑧 ∩ 𝑆 ) ∈ 𝑠 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) |
84 |
82 83
|
simplbiim |
⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) |
85 |
79 84
|
syl6 |
⊢ ( 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) |
86 |
85
|
2a1d |
⊢ ( 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) ) ) |
87 |
86
|
adantr |
⊢ ( ( 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) ) ) |
88 |
78 87
|
sylanb |
⊢ ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) ) ) |
89 |
88
|
3imp |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) |
90 |
89
|
rexlimdv |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ( ∃ 𝑧 ∈ 𝑑 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) |
91 |
77 90
|
syl5bi |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ( 𝑡 ∈ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } → 𝑡 ∈ 𝑠 ) ) |
92 |
91
|
ssrdv |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ⊆ 𝑠 ) |
93 |
|
vex |
⊢ 𝑑 ∈ V |
94 |
93
|
abrexex |
⊢ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ V |
95 |
94
|
elpw |
⊢ ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ 𝒫 𝑠 ↔ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ⊆ 𝑠 ) |
96 |
92 95
|
sylibr |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ 𝒫 𝑠 ) |
97 |
|
abrexfi |
⊢ ( 𝑑 ∈ Fin → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ Fin ) |
98 |
97
|
ad2antlr |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ Fin ) |
99 |
98
|
3adant3 |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ Fin ) |
100 |
96 99
|
elind |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ ( 𝒫 𝑠 ∩ Fin ) ) |
101 |
|
dfss |
⊢ ( 𝑆 ⊆ ∪ 𝑑 ↔ 𝑆 = ( 𝑆 ∩ ∪ 𝑑 ) ) |
102 |
101
|
biimpi |
⊢ ( 𝑆 ⊆ ∪ 𝑑 → 𝑆 = ( 𝑆 ∩ ∪ 𝑑 ) ) |
103 |
|
uniiun |
⊢ ∪ 𝑑 = ∪ 𝑧 ∈ 𝑑 𝑧 |
104 |
103
|
ineq2i |
⊢ ( 𝑆 ∩ ∪ 𝑑 ) = ( 𝑆 ∩ ∪ 𝑧 ∈ 𝑑 𝑧 ) |
105 |
|
iunin2 |
⊢ ∪ 𝑧 ∈ 𝑑 ( 𝑆 ∩ 𝑧 ) = ( 𝑆 ∩ ∪ 𝑧 ∈ 𝑑 𝑧 ) |
106 |
|
incom |
⊢ ( 𝑆 ∩ 𝑧 ) = ( 𝑧 ∩ 𝑆 ) |
107 |
106
|
a1i |
⊢ ( 𝑧 ∈ 𝑑 → ( 𝑆 ∩ 𝑧 ) = ( 𝑧 ∩ 𝑆 ) ) |
108 |
107
|
iuneq2i |
⊢ ∪ 𝑧 ∈ 𝑑 ( 𝑆 ∩ 𝑧 ) = ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) |
109 |
104 105 108
|
3eqtr2i |
⊢ ( 𝑆 ∩ ∪ 𝑑 ) = ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) |
110 |
102 109
|
eqtrdi |
⊢ ( 𝑆 ⊆ ∪ 𝑑 → 𝑆 = ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) ) |
111 |
110
|
3ad2ant2 |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → 𝑆 = ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) ) |
112 |
18
|
ad2antrl |
⊢ ( ( 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
113 |
112
|
3adant1 |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
114 |
|
vex |
⊢ 𝑧 ∈ V |
115 |
114
|
inex1 |
⊢ ( 𝑧 ∩ 𝑆 ) ∈ V |
116 |
115
|
dfiun2 |
⊢ ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } |
117 |
116
|
a1i |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ) |
118 |
111 113 117
|
3eqtr3d |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ) |
119 |
|
unieq |
⊢ ( 𝑡 = { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } → ∪ 𝑡 = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ) |
120 |
119
|
rspceeqv |
⊢ ( ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ ( 𝒫 𝑠 ∩ Fin ) ∧ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) |
121 |
100 118 120
|
syl2anc |
⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) |
122 |
121
|
3exp |
⊢ ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
123 |
73 122
|
sylbi |
⊢ ( 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
124 |
123
|
rexlimiv |
⊢ ( ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) |
125 |
72 124
|
syl6 |
⊢ ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
126 |
125
|
com3r |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
127 |
71 126
|
mpd |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) |
128 |
127
|
ex |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( 𝑆 = ∪ 𝑠 → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
129 |
19 128
|
sylbird |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
130 |
129
|
com23 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
131 |
16 130
|
syld |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
132 |
131
|
ralrimdva |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |