Metamath Proof Explorer


Theorem cmscmet

Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscms.1 𝑋 = ( Base ‘ 𝑀 )
iscms.2 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) )
Assertion cmscmet ( 𝑀 ∈ CMetSp → 𝐷 ∈ ( CMet ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 iscms.1 𝑋 = ( Base ‘ 𝑀 )
2 iscms.2 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) )
3 1 2 iscms ( 𝑀 ∈ CMetSp ↔ ( 𝑀 ∈ MetSp ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) )
4 3 simprbi ( 𝑀 ∈ CMetSp → 𝐷 ∈ ( CMet ‘ 𝑋 ) )