Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iscms.1 | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
iscms.2 | ⊢ 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
Assertion | cmscmet | ⊢ ( 𝑀 ∈ CMetSp → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscms.1 | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
2 | iscms.2 | ⊢ 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) | |
3 | 1 2 | iscms | ⊢ ( 𝑀 ∈ CMetSp ↔ ( 𝑀 ∈ MetSp ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
4 | 3 | simprbi | ⊢ ( 𝑀 ∈ CMetSp → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |