Step |
Hyp |
Ref |
Expression |
1 |
|
cmslssbn.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
cmscsscms.s |
⊢ 𝑆 = ( ClSubSp ‘ 𝑊 ) |
3 |
|
cmsms |
⊢ ( 𝑊 ∈ CMetSp → 𝑊 ∈ MetSp ) |
4 |
3
|
adantr |
⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) → 𝑊 ∈ MetSp ) |
5 |
|
ressms |
⊢ ( ( 𝑊 ∈ MetSp ∧ 𝑈 ∈ 𝑆 ) → ( 𝑊 ↾s 𝑈 ) ∈ MetSp ) |
6 |
4 5
|
sylan |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( 𝑊 ↾s 𝑈 ) ∈ MetSp ) |
7 |
1 6
|
eqeltrid |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ MetSp ) |
8 |
|
cphlmod |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) |
9 |
8
|
adantl |
⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) → 𝑊 ∈ LMod ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ LMod ) |
11 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
12 |
11
|
adantl |
⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) → 𝑊 ∈ PreHil ) |
13 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
14 |
2 13
|
csslss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
15 |
12 14
|
sylan |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
16 |
13
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
17 |
10 15 16
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
18 |
1
|
subgbas |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
20 |
|
eqid |
⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) |
21 |
2 20
|
csscld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) |
22 |
21
|
adantll |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) |
23 |
19 22
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ 𝑋 ) ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) |
24 |
|
eqid |
⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) |
25 |
1 24
|
ressds |
⊢ ( 𝑈 ∈ 𝑆 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝑋 ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( dist ‘ 𝑊 ) = ( dist ‘ 𝑋 ) ) |
27 |
26
|
eqcomd |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( dist ‘ 𝑋 ) = ( dist ‘ 𝑊 ) ) |
28 |
27
|
reseq1d |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ) |
29 |
19 17
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
31 |
30
|
subgss |
⊢ ( ( Base ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑊 ) → ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) ) |
32 |
29 31
|
syl |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) ) |
33 |
|
xpss12 |
⊢ ( ( ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) ∧ ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) ) → ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ⊆ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
34 |
32 32 33
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ⊆ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
35 |
34
|
resabs1d |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ) |
36 |
28 35
|
eqtr4d |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ) |
37 |
36
|
eleq1d |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ↔ ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) ) |
38 |
|
eqid |
⊢ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
39 |
30 38
|
cmscmet |
⊢ ( 𝑊 ∈ CMetSp → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑊 ) ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑊 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑊 ) ) ) |
42 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
43 |
42
|
cmetss |
⊢ ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑊 ) ) → ( ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ↔ ( Base ‘ 𝑋 ) ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) ) |
44 |
41 43
|
syl |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ↔ ( Base ‘ 𝑋 ) ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) ) |
45 |
4
|
adantr |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ MetSp ) |
46 |
20 30 38
|
mstopn |
⊢ ( 𝑊 ∈ MetSp → ( TopOpen ‘ 𝑊 ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
47 |
45 46
|
syl |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( TopOpen ‘ 𝑊 ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
48 |
47
|
eqcomd |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) = ( TopOpen ‘ 𝑊 ) ) |
49 |
48
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) = ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) |
50 |
49
|
eleq2d |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( Base ‘ 𝑋 ) ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ↔ ( Base ‘ 𝑋 ) ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) |
51 |
37 44 50
|
3bitrd |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ↔ ( Base ‘ 𝑋 ) ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) |
52 |
23 51
|
mpbird |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) |
53 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
54 |
|
eqid |
⊢ ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) |
55 |
53 54
|
iscms |
⊢ ( 𝑋 ∈ CMetSp ↔ ( 𝑋 ∈ MetSp ∧ ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) ) |
56 |
7 52 55
|
sylanbrc |
⊢ ( ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ CMetSp ) |