Metamath Proof Explorer


Theorem cmslssbn

Description: A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn . (Contributed by AV, 8-Oct-2022)

Ref Expression
Hypotheses cmslssbn.x 𝑋 = ( 𝑊s 𝑈 )
cmslssbn.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion cmslssbn ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈𝑆 ) ) → 𝑋 ∈ Ban )

Proof

Step Hyp Ref Expression
1 cmslssbn.x 𝑋 = ( 𝑊s 𝑈 )
2 cmslssbn.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 1 2 lssnvc ( ( 𝑊 ∈ NrmVec ∧ 𝑈𝑆 ) → 𝑋 ∈ NrmVec )
4 3 ad2ant2rl ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈𝑆 ) ) → 𝑋 ∈ NrmVec )
5 simprl ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈𝑆 ) ) → 𝑋 ∈ CMetSp )
6 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
7 1 6 resssca ( 𝑈𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) )
8 7 ad2antll ( ( 𝑊 ∈ NrmVec ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈𝑆 ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) )
9 8 eleq1d ( ( 𝑊 ∈ NrmVec ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈𝑆 ) ) → ( ( Scalar ‘ 𝑊 ) ∈ CMetSp ↔ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) )
10 9 biimpd ( ( 𝑊 ∈ NrmVec ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈𝑆 ) ) → ( ( Scalar ‘ 𝑊 ) ∈ CMetSp → ( Scalar ‘ 𝑋 ) ∈ CMetSp ) )
11 10 impancom ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) → ( ( 𝑋 ∈ CMetSp ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ CMetSp ) )
12 11 imp ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈𝑆 ) ) → ( Scalar ‘ 𝑋 ) ∈ CMetSp )
13 eqid ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 )
14 13 isbn ( 𝑋 ∈ Ban ↔ ( 𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) )
15 4 5 12 14 syl3anbrc ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈𝑆 ) ) → 𝑋 ∈ Ban )