Step |
Hyp |
Ref |
Expression |
1 |
|
cmslsschl.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
cmslsschl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
hlbn |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) |
4 |
|
bnnvc |
⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec ) |
5 |
3 4
|
syl |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ NrmVec ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ NrmVec ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
8 |
7
|
bnsca |
⊢ ( 𝑊 ∈ Ban → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
9 |
3 8
|
syl |
⊢ ( 𝑊 ∈ ℂHil → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
11 |
|
3simpc |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) |
12 |
1 2
|
cmslssbn |
⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → 𝑋 ∈ Ban ) |
13 |
6 10 11 12
|
syl21anc |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ Ban ) |
14 |
|
hlcph |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) |
15 |
1 2
|
cphsscph |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |
16 |
14 15
|
sylan |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |
18 |
|
ishl |
⊢ ( 𝑋 ∈ ℂHil ↔ ( 𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil ) ) |
19 |
13 17 18
|
sylanbrc |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂHil ) |