Metamath Proof Explorer


Theorem cmsms

Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cmsms ( 𝐺 ∈ CMetSp → 𝐺 ∈ MetSp )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
2 eqid ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) )
3 1 2 iscms ( 𝐺 ∈ CMetSp ↔ ( 𝐺 ∈ MetSp ∧ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐺 ) ) ) )
4 3 simplbi ( 𝐺 ∈ CMetSp → 𝐺 ∈ MetSp )