Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cmsms | ⊢ ( 𝐺 ∈ CMetSp → 𝐺 ∈ MetSp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
2 | eqid | ⊢ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) | |
3 | 1 2 | iscms | ⊢ ( 𝐺 ∈ CMetSp ↔ ( 𝐺 ∈ MetSp ∧ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐺 ) ) ) ) |
4 | 3 | simplbi | ⊢ ( 𝐺 ∈ CMetSp → 𝐺 ∈ MetSp ) |