Step |
Hyp |
Ref |
Expression |
1 |
|
cmspropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
cmspropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
cmspropd.3 |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) |
4 |
|
cmspropd.4 |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) |
5 |
1 2 3 4
|
mspropd |
⊢ ( 𝜑 → ( 𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp ) ) |
6 |
1
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
7 |
6
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
8 |
3 7
|
eqtr3d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
9 |
2
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
10 |
9
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
11 |
8 10
|
eqtr3d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
12 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( CMet ‘ ( Base ‘ 𝐾 ) ) = ( CMet ‘ ( Base ‘ 𝐿 ) ) ) |
14 |
11 13
|
eleq12d |
⊢ ( 𝜑 → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ↔ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐿 ) ) ) ) |
15 |
5 14
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ↔ ( 𝐿 ∈ MetSp ∧ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐿 ) ) ) ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
17 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
18 |
16 17
|
iscms |
⊢ ( 𝐾 ∈ CMetSp ↔ ( 𝐾 ∈ MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
20 |
|
eqid |
⊢ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
21 |
19 20
|
iscms |
⊢ ( 𝐿 ∈ CMetSp ↔ ( 𝐿 ∈ MetSp ∧ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐿 ) ) ) ) |
22 |
15 18 21
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ CMetSp ↔ 𝐿 ∈ CMetSp ) ) |