Step |
Hyp |
Ref |
Expression |
1 |
|
cmsss.h |
⊢ 𝐾 = ( 𝑀 ↾s 𝐴 ) |
2 |
|
cmsss.x |
⊢ 𝑋 = ( Base ‘ 𝑀 ) |
3 |
|
cmsss.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑀 ) |
4 |
|
eqid |
⊢ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) |
5 |
2 4
|
msmet |
⊢ ( 𝑀 ∈ MetSp → ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ) |
7 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
8 |
7
|
anidms |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
10 |
9
|
resabs1d |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝐴 × 𝐴 ) ) ) |
11 |
2
|
sseq2i |
⊢ ( 𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ ( Base ‘ 𝑀 ) ) |
12 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
13 |
12
|
ssex |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝑀 ) → 𝐴 ∈ V ) |
14 |
11 13
|
sylbi |
⊢ ( 𝐴 ⊆ 𝑋 → 𝐴 ∈ V ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → 𝐴 ∈ V ) |
16 |
|
eqid |
⊢ ( dist ‘ 𝑀 ) = ( dist ‘ 𝑀 ) |
17 |
1 16
|
ressds |
⊢ ( 𝐴 ∈ V → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
18 |
15 17
|
syl |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
19 |
18
|
reseq1d |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( ( dist ‘ 𝑀 ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( 𝐴 × 𝐴 ) ) ) |
20 |
10 19
|
eqtrd |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( 𝐴 × 𝐴 ) ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
22 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
23 |
21 22
|
iscms |
⊢ ( 𝐾 ∈ CMetSp ↔ ( 𝐾 ∈ MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
24 |
1 2
|
ressbas2 |
⊢ ( 𝐴 ⊆ 𝑋 → 𝐴 = ( Base ‘ 𝐾 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp ) → 𝐴 = ( Base ‘ 𝐾 ) ) |
26 |
25
|
eqcomd |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp ) → ( Base ‘ 𝐾 ) = 𝐴 ) |
27 |
26
|
sqxpeqd |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp ) → ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) = ( 𝐴 × 𝐴 ) ) |
28 |
27
|
reseq2d |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( 𝐴 × 𝐴 ) ) ) |
29 |
26
|
fveq2d |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp ) → ( CMet ‘ ( Base ‘ 𝐾 ) ) = ( CMet ‘ 𝐴 ) ) |
30 |
28 29
|
eleq12d |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ↔ ( ( dist ‘ 𝐾 ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ) ) |
31 |
30
|
biimpd |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ MetSp ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) → ( ( dist ‘ 𝐾 ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ) ) |
32 |
31
|
expimpd |
⊢ ( 𝐴 ⊆ 𝑋 → ( ( 𝐾 ∈ MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) → ( ( dist ‘ 𝐾 ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ) ) |
33 |
23 32
|
syl5bi |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐾 ∈ CMetSp → ( ( dist ‘ 𝐾 ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ) ) |
34 |
33
|
imp |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( ( dist ‘ 𝐾 ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ) |
35 |
34
|
3adant1 |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( ( dist ‘ 𝐾 ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ) |
36 |
20 35
|
eqeltrd |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ) |
37 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
38 |
37
|
metsscmetcld |
⊢ ( ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ∧ ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ) → 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) |
39 |
6 36 38
|
syl2anc |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) |
40 |
3 2 4
|
mstopn |
⊢ ( 𝑀 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
41 |
40
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
42 |
41
|
fveq2d |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → ( Clsd ‘ 𝐽 ) = ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) |
43 |
39 42
|
eleqtrrd |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |