| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmsss.h | ⊢ 𝐾  =  ( 𝑀  ↾s  𝐴 ) | 
						
							| 2 |  | cmsss.x | ⊢ 𝑋  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | cmsss.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑀 ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ⊆  𝑋 ) | 
						
							| 5 |  | xpss12 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ×  𝐴 )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 6 | 4 5 | sylancom | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ×  𝐴 )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 7 | 6 | resabs1d | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  ↾  ( 𝐴  ×  𝐴 ) )  =  ( ( dist ‘ 𝑀 )  ↾  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 8 | 2 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 9 | 8 | ssex | ⊢ ( 𝐴  ⊆  𝑋  →  𝐴  ∈  V ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ∈  V ) | 
						
							| 11 |  | eqid | ⊢ ( dist ‘ 𝑀 )  =  ( dist ‘ 𝑀 ) | 
						
							| 12 | 1 11 | ressds | ⊢ ( 𝐴  ∈  V  →  ( dist ‘ 𝑀 )  =  ( dist ‘ 𝐾 ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( dist ‘ 𝑀 )  =  ( dist ‘ 𝐾 ) ) | 
						
							| 14 | 1 2 | ressbas2 | ⊢ ( 𝐴  ⊆  𝑋  →  𝐴  =  ( Base ‘ 𝐾 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  𝐴  =  ( Base ‘ 𝐾 ) ) | 
						
							| 16 | 15 | sqxpeqd | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ×  𝐴 )  =  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) | 
						
							| 17 | 13 16 | reseq12d | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( ( dist ‘ 𝑀 )  ↾  ( 𝐴  ×  𝐴 ) )  =  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 18 | 7 17 | eqtrd | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  ↾  ( 𝐴  ×  𝐴 ) )  =  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 19 | 15 | fveq2d | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( CMet ‘ 𝐴 )  =  ( CMet ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 20 | 18 19 | eleq12d | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  ↾  ( 𝐴  ×  𝐴 ) )  ∈  ( CMet ‘ 𝐴 )  ↔  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  =  ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 22 | 2 21 | cmscmet | ⊢ ( 𝑀  ∈  CMetSp  →  ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 24 |  | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) )  =  ( MetOpen ‘ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 25 | 24 | cmetss | ⊢ ( ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  ∈  ( CMet ‘ 𝑋 )  →  ( ( ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  ↾  ( 𝐴  ×  𝐴 ) )  ∈  ( CMet ‘ 𝐴 )  ↔  𝐴  ∈  ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) ) ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) )  ↾  ( 𝐴  ×  𝐴 ) )  ∈  ( CMet ‘ 𝐴 )  ↔  𝐴  ∈  ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) ) ) ) | 
						
							| 27 | 20 26 | bitr3d | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝐾 ) )  ↔  𝐴  ∈  ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) ) ) ) | 
						
							| 28 |  | cmsms | ⊢ ( 𝑀  ∈  CMetSp  →  𝑀  ∈  MetSp ) | 
						
							| 29 |  | ressms | ⊢ ( ( 𝑀  ∈  MetSp  ∧  𝐴  ∈  V )  →  ( 𝑀  ↾s  𝐴 )  ∈  MetSp ) | 
						
							| 30 | 1 29 | eqeltrid | ⊢ ( ( 𝑀  ∈  MetSp  ∧  𝐴  ∈  V )  →  𝐾  ∈  MetSp ) | 
						
							| 31 | 28 9 30 | syl2an | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  𝐾  ∈  MetSp ) | 
						
							| 32 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 33 |  | eqid | ⊢ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  =  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) | 
						
							| 34 | 32 33 | iscms | ⊢ ( 𝐾  ∈  CMetSp  ↔  ( 𝐾  ∈  MetSp  ∧  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 35 | 34 | baib | ⊢ ( 𝐾  ∈  MetSp  →  ( 𝐾  ∈  CMetSp  ↔  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 36 | 31 35 | syl | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐾  ∈  CMetSp  ↔  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 37 | 28 | adantr | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  𝑀  ∈  MetSp ) | 
						
							| 38 | 3 2 21 | mstopn | ⊢ ( 𝑀  ∈  MetSp  →  𝐽  =  ( MetOpen ‘ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  𝐽  =  ( MetOpen ‘ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( Clsd ‘ 𝐽 )  =  ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) ) ) | 
						
							| 41 | 40 | eleq2d | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  ↔  𝐴  ∈  ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) ) ) ) | 
						
							| 42 | 27 36 41 | 3bitr4d | ⊢ ( ( 𝑀  ∈  CMetSp  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐾  ∈  CMetSp  ↔  𝐴  ∈  ( Clsd ‘ 𝐽 ) ) ) |