Step |
Hyp |
Ref |
Expression |
1 |
|
cmsss.h |
⊢ 𝐾 = ( 𝑀 ↾s 𝐴 ) |
2 |
|
cmsss.x |
⊢ 𝑋 = ( Base ‘ 𝑀 ) |
3 |
|
cmsss.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑀 ) |
4 |
|
simpr |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) |
5 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
6 |
4 5
|
sylancom |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
7 |
6
|
resabs1d |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝐴 × 𝐴 ) ) ) |
8 |
2
|
fvexi |
⊢ 𝑋 ∈ V |
9 |
8
|
ssex |
⊢ ( 𝐴 ⊆ 𝑋 → 𝐴 ∈ V ) |
10 |
9
|
adantl |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
11 |
|
eqid |
⊢ ( dist ‘ 𝑀 ) = ( dist ‘ 𝑀 ) |
12 |
1 11
|
ressds |
⊢ ( 𝐴 ∈ V → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
13 |
10 12
|
syl |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
14 |
1 2
|
ressbas2 |
⊢ ( 𝐴 ⊆ 𝑋 → 𝐴 = ( Base ‘ 𝐾 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ( Base ‘ 𝐾 ) ) |
16 |
15
|
sqxpeqd |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
17 |
13 16
|
reseq12d |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( dist ‘ 𝑀 ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
18 |
7 17
|
eqtrd |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
19 |
15
|
fveq2d |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( CMet ‘ 𝐴 ) = ( CMet ‘ ( Base ‘ 𝐾 ) ) ) |
20 |
18 19
|
eleq12d |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
21 |
|
eqid |
⊢ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) |
22 |
2 21
|
cmscmet |
⊢ ( 𝑀 ∈ CMetSp → ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( CMet ‘ 𝑋 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( CMet ‘ 𝑋 ) ) |
24 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
25 |
24
|
cmetss |
⊢ ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( CMet ‘ 𝑋 ) → ( ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ↔ 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) ) |
26 |
23 25
|
syl |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ↔ 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) ) |
27 |
20 26
|
bitr3d |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ↔ 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) ) |
28 |
|
cmsms |
⊢ ( 𝑀 ∈ CMetSp → 𝑀 ∈ MetSp ) |
29 |
|
ressms |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ∈ V ) → ( 𝑀 ↾s 𝐴 ) ∈ MetSp ) |
30 |
1 29
|
eqeltrid |
⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ∈ V ) → 𝐾 ∈ MetSp ) |
31 |
28 9 30
|
syl2an |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐾 ∈ MetSp ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
33 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
34 |
32 33
|
iscms |
⊢ ( 𝐾 ∈ CMetSp ↔ ( 𝐾 ∈ MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
35 |
34
|
baib |
⊢ ( 𝐾 ∈ MetSp → ( 𝐾 ∈ CMetSp ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
36 |
31 35
|
syl |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐾 ∈ CMetSp ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
37 |
28
|
adantr |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝑀 ∈ MetSp ) |
38 |
3 2 21
|
mstopn |
⊢ ( 𝑀 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
40 |
39
|
fveq2d |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( Clsd ‘ 𝐽 ) = ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) |
41 |
40
|
eleq2d |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ↔ 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) ) |
42 |
27 36 41
|
3bitr4d |
⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐾 ∈ CMetSp ↔ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |