Step |
Hyp |
Ref |
Expression |
1 |
|
cmt2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cmt2.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
3 |
|
cmt2.c |
⊢ 𝐶 = ( cm ‘ 𝐾 ) |
4 |
1 2 3
|
cmt2N |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ 𝑋 𝐶 ( ⊥ ‘ 𝑌 ) ) ) |
5 |
|
omlop |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
7 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
8 |
1 2
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
10 |
1 2 3
|
cmt3N |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 𝐶 ( ⊥ ‘ 𝑌 ) ↔ ( ⊥ ‘ 𝑋 ) 𝐶 ( ⊥ ‘ 𝑌 ) ) ) |
11 |
9 10
|
syld3an3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 ( ⊥ ‘ 𝑌 ) ↔ ( ⊥ ‘ 𝑋 ) 𝐶 ( ⊥ ‘ 𝑌 ) ) ) |
12 |
4 11
|
bitrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( ⊥ ‘ 𝑋 ) 𝐶 ( ⊥ ‘ 𝑌 ) ) ) |