Metamath Proof Explorer


Theorem cmt4N

Description: Commutation with orthocomplement. Remark in Kalmbach p. 23. ( cmcm4i analog.) (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmt2.b 𝐵 = ( Base ‘ 𝐾 )
cmt2.o = ( oc ‘ 𝐾 )
cmt2.c 𝐶 = ( cm ‘ 𝐾 )
Assertion cmt4N ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 ) 𝐶 ( 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 cmt2.b 𝐵 = ( Base ‘ 𝐾 )
2 cmt2.o = ( oc ‘ 𝐾 )
3 cmt2.c 𝐶 = ( cm ‘ 𝐾 )
4 1 2 3 cmt2N ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌𝑋 𝐶 ( 𝑌 ) ) )
5 omlop ( 𝐾 ∈ OML → 𝐾 ∈ OP )
6 5 3ad2ant1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ OP )
7 simp3 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
8 1 2 opoccl ( ( 𝐾 ∈ OP ∧ 𝑌𝐵 ) → ( 𝑌 ) ∈ 𝐵 )
9 6 7 8 syl2anc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑌 ) ∈ 𝐵 )
10 1 2 3 cmt3N ( ( 𝐾 ∈ OML ∧ 𝑋𝐵 ∧ ( 𝑌 ) ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑌 ) ↔ ( 𝑋 ) 𝐶 ( 𝑌 ) ) )
11 9 10 syld3an3 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 ( 𝑌 ) ↔ ( 𝑋 ) 𝐶 ( 𝑌 ) ) )
12 4 11 bitrd ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 ) 𝐶 ( 𝑌 ) ) )