Step |
Hyp |
Ref |
Expression |
1 |
|
cmtbr2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cmtbr2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cmtbr2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cmtbr2.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
5 |
|
cmtbr2.c |
⊢ 𝐶 = ( cm ‘ 𝐾 ) |
6 |
1 4 5
|
cmt4N |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( ⊥ ‘ 𝑋 ) 𝐶 ( ⊥ ‘ 𝑌 ) ) ) |
7 |
|
simp1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OML ) |
8 |
|
omlop |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
10 |
|
simp2 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
11 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
12 |
9 10 11
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
13 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
14 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
15 |
9 13 14
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
16 |
1 2 3 4 5
|
cmtvalN |
⊢ ( ( 𝐾 ∈ OML ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) 𝐶 ( ⊥ ‘ 𝑌 ) ↔ ( ⊥ ‘ 𝑋 ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
17 |
7 12 15 16
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) 𝐶 ( ⊥ ‘ 𝑌 ) ↔ ( ⊥ ‘ 𝑋 ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
18 |
|
eqcom |
⊢ ( 𝑋 = ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ↔ ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = 𝑋 ) |
19 |
18
|
a1i |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ↔ ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = 𝑋 ) ) |
20 |
|
omllat |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
22 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
23 |
20 22
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
24 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
25 |
21 10 15 24
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
26 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
27 |
21 23 25 26
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
28 |
1 4
|
opcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
29 |
9 27 10 28
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
30 |
|
omlol |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OL ) |
31 |
30
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OL ) |
32 |
1 2 3 4
|
oldmm1 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ⊥ ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ ( 𝑋 ∨ 𝑌 ) ) ∨ ( ⊥ ‘ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
33 |
31 23 25 32
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ ( 𝑋 ∨ 𝑌 ) ) ∨ ( ⊥ ‘ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
34 |
1 2 3 4
|
oldmj1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |
35 |
30 34
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ) |
36 |
1 2 3 4
|
oldmj1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
37 |
31 10 15 36
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
38 |
35 37
|
oveq12d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( 𝑋 ∨ 𝑌 ) ) ∨ ( ⊥ ‘ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
39 |
33 38
|
eqtrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
40 |
39
|
eqeq2d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) ↔ ( ⊥ ‘ 𝑋 ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
41 |
19 29 40
|
3bitrrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ↔ 𝑋 = ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
42 |
6 17 41
|
3bitrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ 𝑋 = ( ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑌 ) ) ) ) ) |