Step |
Hyp |
Ref |
Expression |
1 |
|
cmtbr2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cmtbr2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cmtbr2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cmtbr2.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
5 |
|
cmtbr2.c |
⊢ 𝐶 = ( cm ‘ 𝐾 ) |
6 |
1 5
|
cmtcomN |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ 𝑌 𝐶 𝑋 ) ) |
7 |
1 2 3 4 5
|
cmtbr2N |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 𝐶 𝑋 ↔ 𝑌 = ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
8 |
7
|
3com23 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 𝐶 𝑋 ↔ 𝑌 = ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
9 |
6 8
|
bitrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ 𝑌 = ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑌 = ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑋 ∧ ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑋 ∧ ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
12 |
|
omlol |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OL ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OL ) |
14 |
|
simp2 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
15 |
|
omllat |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
17 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
18 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑋 ) ∈ 𝐵 ) |
19 |
16 17 14 18
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑋 ) ∈ 𝐵 ) |
20 |
|
omlop |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
22 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
23 |
21 14 22
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
24 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ∈ 𝐵 ) |
25 |
16 17 23 24
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ∈ 𝐵 ) |
26 |
1 3
|
latmassOLD |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∨ 𝑋 ) ∈ 𝐵 ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ∈ 𝐵 ) ) → ( ( 𝑋 ∧ ( 𝑌 ∨ 𝑋 ) ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) = ( 𝑋 ∧ ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
27 |
13 14 19 25 26
|
syl13anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( 𝑌 ∨ 𝑋 ) ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) = ( 𝑋 ∧ ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
28 |
1 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑌 ) ) |
29 |
16 17 14 28
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑌 ) ) |
30 |
29
|
oveq2d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑌 ∨ 𝑋 ) ) = ( 𝑋 ∧ ( 𝑋 ∨ 𝑌 ) ) ) |
31 |
1 2 3
|
latabs2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑋 ∨ 𝑌 ) ) = 𝑋 ) |
32 |
15 31
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑋 ∨ 𝑌 ) ) = 𝑋 ) |
33 |
30 32
|
eqtrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑌 ∨ 𝑋 ) ) = 𝑋 ) |
34 |
1 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) |
35 |
16 17 23 34
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) |
36 |
33 35
|
oveq12d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( 𝑌 ∨ 𝑋 ) ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) = ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) |
37 |
27 36
|
eqtr3d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) = ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) → ( 𝑋 ∧ ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) = ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) |
39 |
11 38
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) ) → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) |
40 |
39
|
ex |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 = ( ( 𝑌 ∨ 𝑋 ) ∧ ( 𝑌 ∨ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) ) |
41 |
9 40
|
sylbid |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) ) |
42 |
|
simp1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OML ) |
43 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
44 |
21 17 43
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
45 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
46 |
16 14 44 45
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) |
47 |
42 46 14
|
3jca |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐾 ∈ OML ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
48 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
49 |
1 48 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ( le ‘ 𝐾 ) 𝑋 ) |
50 |
16 14 44 49
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ( le ‘ 𝐾 ) 𝑋 ) |
51 |
1 48 2 3 4
|
omllaw2N |
⊢ ( ( 𝐾 ∈ OML ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ( le ‘ 𝐾 ) 𝑋 → ( ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ) = 𝑋 ) ) |
52 |
47 50 51
|
sylc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ) = 𝑋 ) |
53 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
54 |
21 46 53
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
55 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∈ 𝐵 ) |
56 |
16 54 14 55
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∈ 𝐵 ) |
57 |
1 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∈ 𝐵 ∧ ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ) = ( ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) |
58 |
16 46 56 57
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ∨ ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ) = ( ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) |
59 |
52 58
|
eqtr3d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 = ( ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) → 𝑋 = ( ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) |
61 |
1 2 3 4
|
oldmm3N |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) |
62 |
12 61
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) |
63 |
62
|
oveq2d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) = ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) |
64 |
1 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∈ 𝐵 ) → ( 𝑋 ∧ ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ) |
65 |
16 14 54 64
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ) |
66 |
63 65
|
eqtr3d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ) |
67 |
66
|
eqeq1d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ↔ ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) = ( 𝑋 ∧ 𝑌 ) ) ) |
68 |
|
oveq1 |
⊢ ( ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) = ( 𝑋 ∧ 𝑌 ) → ( ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) |
69 |
67 68
|
syl6bi |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) → ( ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
70 |
69
|
imp |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) → ( ( ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ∧ 𝑋 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) |
71 |
60 70
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) → 𝑋 = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) |
72 |
71
|
ex |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) → 𝑋 = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
73 |
1 2 3 4 5
|
cmtvalN |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ 𝑋 = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
74 |
72 73
|
sylibrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) → 𝑋 𝐶 𝑌 ) ) |
75 |
41 74
|
impbid |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) ) |