Metamath Proof Explorer


Theorem cmtcomlemN

Description: Lemma for cmtcomN . ( cmcmlem analog.) (Contributed by NM, 7-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtcom.b 𝐵 = ( Base ‘ 𝐾 )
cmtcom.c 𝐶 = ( cm ‘ 𝐾 )
Assertion cmtcomlemN ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌𝑌 𝐶 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cmtcom.b 𝐵 = ( Base ‘ 𝐾 )
2 cmtcom.c 𝐶 = ( cm ‘ 𝐾 )
3 omllat ( 𝐾 ∈ OML → 𝐾 ∈ Lat )
4 3 3ad2ant1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ Lat )
5 omlop ( 𝐾 ∈ OML → 𝐾 ∈ OP )
6 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
7 1 6 opoccl ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 )
8 5 7 sylan ( ( 𝐾 ∈ OML ∧ 𝑋𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 )
9 8 3adant3 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 )
10 simp3 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
11 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
12 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
13 1 11 12 latlej2 ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵𝑌𝐵 ) → 𝑌 ( le ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) )
14 4 9 10 13 syl3anc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌 ( le ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) )
15 1 12 latjcl ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵𝑌𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 )
16 4 9 10 15 syl3anc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 )
17 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
18 1 11 17 latleeqm2 ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ) → ( 𝑌 ( le ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ↔ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ( meet ‘ 𝐾 ) 𝑌 ) = 𝑌 ) )
19 4 10 16 18 syl3anc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑌 ( le ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ↔ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ( meet ‘ 𝐾 ) 𝑌 ) = 𝑌 ) )
20 14 19 mpbid ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ( meet ‘ 𝐾 ) 𝑌 ) = 𝑌 )
21 20 oveq2d ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ( meet ‘ 𝐾 ) 𝑌 ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) )
22 omlol ( 𝐾 ∈ OML → 𝐾 ∈ OL )
23 22 3ad2ant1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ OL )
24 5 3ad2ant1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ OP )
25 1 6 opoccl ( ( 𝐾 ∈ OP ∧ 𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 )
26 24 10 25 syl2anc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 )
27 1 12 latjcl ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 )
28 4 9 26 27 syl3anc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 )
29 1 17 latmassOLD ( ( 𝐾 ∈ OL ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ∈ 𝐵𝑌𝐵 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ( meet ‘ 𝐾 ) 𝑌 ) ) )
30 23 28 16 10 29 syl13anc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ( meet ‘ 𝐾 ) 𝑌 ) ) )
31 1 12 17 6 oldmm1 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )
32 22 31 syl3an1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )
33 32 oveq1d ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) )
34 21 30 33 3eqtr4rd ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) = ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) )
35 34 adantr ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) = ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) )
36 1 12 17 6 oldmj4 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) )
37 22 36 syl3an1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) )
38 1 12 17 6 oldmj2 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) = ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )
39 22 38 syl3an1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) = ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )
40 37 39 oveq12d ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ) = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )
41 40 eqeq2d ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 = ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ) ↔ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) )
42 41 biimpar ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝑋 = ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ) )
43 42 fveq2d ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) = ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ) ) )
44 1 12 17 6 oldmj4 ( ( 𝐾 ∈ OL ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) )
45 23 28 16 44 syl3anc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) )
46 45 adantr ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) )
47 43 46 eqtr2d ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) )
48 47 oveq1d ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) 𝑌 ) )
49 35 48 eqtrd ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) 𝑌 ) )
50 49 oveq2d ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) ) = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) 𝑌 ) ) )
51 simp1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ OML )
52 1 17 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 )
53 3 52 syl3an1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 )
54 51 53 10 3jca ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝐾 ∈ OML ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵𝑌𝐵 ) )
55 1 11 17 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( le ‘ 𝐾 ) 𝑌 )
56 3 55 syl3an1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( le ‘ 𝐾 ) 𝑌 )
57 1 11 12 17 6 omllaw2N ( ( 𝐾 ∈ OML ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵𝑌𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( le ‘ 𝐾 ) 𝑌 → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) ) = 𝑌 ) )
58 54 56 57 sylc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) ) = 𝑌 )
59 58 adantr ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑌 ) ) = 𝑌 )
60 1 17 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) = ( 𝑌 ( meet ‘ 𝐾 ) 𝑋 ) )
61 3 60 syl3an1 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) = ( 𝑌 ( meet ‘ 𝐾 ) 𝑋 ) )
62 1 17 latmcom ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵𝑌𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) 𝑌 ) = ( 𝑌 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) )
63 4 9 10 62 syl3anc ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) 𝑌 ) = ( 𝑌 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) )
64 61 63 oveq12d ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) 𝑌 ) ) = ( ( 𝑌 ( meet ‘ 𝐾 ) 𝑋 ) ( join ‘ 𝐾 ) ( 𝑌 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) )
65 64 adantr ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) 𝑌 ) ) = ( ( 𝑌 ( meet ‘ 𝐾 ) 𝑋 ) ( join ‘ 𝐾 ) ( 𝑌 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) )
66 50 59 65 3eqtr3d ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝑌 = ( ( 𝑌 ( meet ‘ 𝐾 ) 𝑋 ) ( join ‘ 𝐾 ) ( 𝑌 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) )
67 66 ex ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) → 𝑌 = ( ( 𝑌 ( meet ‘ 𝐾 ) 𝑋 ) ( join ‘ 𝐾 ) ( 𝑌 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) )
68 1 12 17 6 2 cmtvalN ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌𝑋 = ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) )
69 1 12 17 6 2 cmtvalN ( ( 𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵 ) → ( 𝑌 𝐶 𝑋𝑌 = ( ( 𝑌 ( meet ‘ 𝐾 ) 𝑋 ) ( join ‘ 𝐾 ) ( 𝑌 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) )
70 69 3com23 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑌 𝐶 𝑋𝑌 = ( ( 𝑌 ( meet ‘ 𝐾 ) 𝑋 ) ( join ‘ 𝐾 ) ( 𝑌 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) )
71 67 68 70 3imtr4d ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌𝑌 𝐶 𝑋 ) )