Metamath Proof Explorer


Theorem cmtidN

Description: Any element commutes with itself. ( cmidi analog.) (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cmtid.b 𝐵 = ( Base ‘ 𝐾 )
cmtid.c 𝐶 = ( cm ‘ 𝐾 )
Assertion cmtidN ( ( 𝐾 ∈ OML ∧ 𝑋𝐵 ) → 𝑋 𝐶 𝑋 )

Proof

Step Hyp Ref Expression
1 cmtid.b 𝐵 = ( Base ‘ 𝐾 )
2 cmtid.c 𝐶 = ( cm ‘ 𝐾 )
3 omllat ( 𝐾 ∈ OML → 𝐾 ∈ Lat )
4 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
5 1 4 latref ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 )
6 3 5 sylan ( ( 𝐾 ∈ OML ∧ 𝑋𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 )
7 1 4 2 lecmtN ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑋𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑋𝑋 𝐶 𝑋 ) )
8 7 3anidm23 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑋𝑋 𝐶 𝑋 ) )
9 6 8 mpd ( ( 𝐾 ∈ OML ∧ 𝑋𝐵 ) → 𝑋 𝐶 𝑋 )