| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cn1lem.1 |
⊢ 𝐹 : ℂ ⟶ ℂ |
| 2 |
|
cn1lem.2 |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
| 3 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 4 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
| 5 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 6 |
4 5 2
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
| 7 |
1
|
ffvelcdmi |
⊢ ( 𝑧 ∈ ℂ → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 8 |
4 7
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 9 |
1
|
ffvelcdmi |
⊢ ( 𝐴 ∈ ℂ → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
5 9
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 11 |
8 10
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 12 |
11
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 13 |
4 5
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( 𝑧 − 𝐴 ) ∈ ℂ ) |
| 14 |
13
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( abs ‘ ( 𝑧 − 𝐴 ) ) ∈ ℝ ) |
| 15 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 16 |
15
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → 𝑥 ∈ ℝ ) |
| 17 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 18 |
12 14 16 17
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 19 |
6 18
|
mpand |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 20 |
19
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 21 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 ) ) |
| 22 |
21
|
rspceaimv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 23 |
3 20 22
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |