Step |
Hyp |
Ref |
Expression |
1 |
|
cnaddabl.g |
⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } |
2 |
|
cnex |
⊢ ℂ ∈ V |
3 |
1
|
grpbase |
⊢ ( ℂ ∈ V → ℂ = ( Base ‘ 𝐺 ) ) |
4 |
2 3
|
ax-mp |
⊢ ℂ = ( Base ‘ 𝐺 ) |
5 |
|
addex |
⊢ + ∈ V |
6 |
1
|
grpplusg |
⊢ ( + ∈ V → + = ( +g ‘ 𝐺 ) ) |
7 |
5 6
|
ax-mp |
⊢ + = ( +g ‘ 𝐺 ) |
8 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
9 |
|
addass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
10 |
|
0cn |
⊢ 0 ∈ ℂ |
11 |
|
addid2 |
⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) |
12 |
|
negcl |
⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) |
13 |
|
addcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ - 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
14 |
12 13
|
mpdan |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
15 |
|
negid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) |
16 |
14 15
|
eqtr3d |
⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 ) |
17 |
4 7 8 9 10 11 12 16
|
isgrpi |
⊢ 𝐺 ∈ Grp |
18 |
|
addcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
19 |
17 4 7 18
|
isabli |
⊢ 𝐺 ∈ Abel |