Step |
Hyp |
Ref |
Expression |
1 |
|
cnex |
⊢ ℂ ∈ V |
2 |
|
ax-addf |
⊢ + : ( ℂ × ℂ ) ⟶ ℂ |
3 |
|
addass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
4 |
|
0cn |
⊢ 0 ∈ ℂ |
5 |
|
addid2 |
⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) |
6 |
|
negcl |
⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) |
7 |
|
addcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ - 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
8 |
6 7
|
mpdan |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
9 |
|
negid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) |
10 |
8 9
|
eqtr3d |
⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 ) |
11 |
1 2 3 4 5 6 10
|
isgrpoi |
⊢ + ∈ GrpOp |
12 |
2
|
fdmi |
⊢ dom + = ( ℂ × ℂ ) |
13 |
|
addcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
14 |
11 12 13
|
isabloi |
⊢ + ∈ AbelOp |