| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnaddablx.g |
⊢ 𝐺 = { 〈 1 , ℂ 〉 , 〈 2 , + 〉 } |
| 2 |
|
cnex |
⊢ ℂ ∈ V |
| 3 |
|
addex |
⊢ + ∈ V |
| 4 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 5 |
|
addass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 6 |
|
0cn |
⊢ 0 ∈ ℂ |
| 7 |
|
addlid |
⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) |
| 8 |
|
negcl |
⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) |
| 9 |
|
addcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ - 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
| 10 |
8 9
|
mpdan |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
| 11 |
|
negid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) |
| 12 |
10 11
|
eqtr3d |
⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 ) |
| 13 |
2 3 1 4 5 6 7 8 12
|
isgrpix |
⊢ 𝐺 ∈ Grp |
| 14 |
2 3 1
|
grpbasex |
⊢ ℂ = ( Base ‘ 𝐺 ) |
| 15 |
2 3 1
|
grpplusgx |
⊢ + = ( +g ‘ 𝐺 ) |
| 16 |
|
addcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 17 |
13 14 15 16
|
isabli |
⊢ 𝐺 ∈ Abel |