| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnaddabl.g |
⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } |
| 2 |
|
0cn |
⊢ 0 ∈ ℂ |
| 3 |
|
cnex |
⊢ ℂ ∈ V |
| 4 |
1
|
grpbase |
⊢ ( ℂ ∈ V → ℂ = ( Base ‘ 𝐺 ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ℂ = ( Base ‘ 𝐺 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 7 |
|
addex |
⊢ + ∈ V |
| 8 |
1
|
grpplusg |
⊢ ( + ∈ V → + = ( +g ‘ 𝐺 ) ) |
| 9 |
7 8
|
ax-mp |
⊢ + = ( +g ‘ 𝐺 ) |
| 10 |
|
id |
⊢ ( 0 ∈ ℂ → 0 ∈ ℂ ) |
| 11 |
|
addlid |
⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) |
| 12 |
11
|
adantl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 13 |
|
addrid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + 0 ) = 𝑥 ) |
| 14 |
13
|
adantl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 15 |
5 6 9 10 12 14
|
ismgmid2 |
⊢ ( 0 ∈ ℂ → 0 = ( 0g ‘ 𝐺 ) ) |
| 16 |
2 15
|
ax-mp |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 17 |
16
|
eqcomi |
⊢ ( 0g ‘ 𝐺 ) = 0 |