| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnaddabl.g | ⊢ 𝐺  =  { 〈 ( Base ‘ ndx ) ,  ℂ 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 } | 
						
							| 2 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 3 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 4 | 1 | grpbase | ⊢ ( ℂ  ∈  V  →  ℂ  =  ( Base ‘ 𝐺 ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ℂ  =  ( Base ‘ 𝐺 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 |  | addex | ⊢  +   ∈  V | 
						
							| 8 | 1 | grpplusg | ⊢ (  +   ∈  V  →   +   =  ( +g ‘ 𝐺 ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 10 |  | id | ⊢ ( 0  ∈  ℂ  →  0  ∈  ℂ ) | 
						
							| 11 |  | addlid | ⊢ ( 𝑥  ∈  ℂ  →  ( 0  +  𝑥 )  =  𝑥 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 0  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 0  +  𝑥 )  =  𝑥 ) | 
						
							| 13 |  | addrid | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  +  0 )  =  𝑥 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 0  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 𝑥  +  0 )  =  𝑥 ) | 
						
							| 15 | 5 6 9 10 12 14 | ismgmid2 | ⊢ ( 0  ∈  ℂ  →  0  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 16 | 2 15 | ax-mp | ⊢ 0  =  ( 0g ‘ 𝐺 ) | 
						
							| 17 | 16 | eqcomi | ⊢ ( 0g ‘ 𝐺 )  =  0 |