| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnaddabl.g | ⊢ 𝐺  =  { 〈 ( Base ‘ ndx ) ,  ℂ 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 } | 
						
							| 2 |  | negid | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  +  - 𝐴 )  =  0 ) | 
						
							| 3 | 1 | cnaddabl | ⊢ 𝐺  ∈  Abel | 
						
							| 4 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ 𝐺  ∈  Grp | 
						
							| 6 |  | id | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 8 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 9 | 1 | grpbase | ⊢ ( ℂ  ∈  V  →  ℂ  =  ( Base ‘ 𝐺 ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ℂ  =  ( Base ‘ 𝐺 ) | 
						
							| 11 |  | addex | ⊢  +   ∈  V | 
						
							| 12 | 1 | grpplusg | ⊢ (  +   ∈  V  →   +   =  ( +g ‘ 𝐺 ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 14 | 1 | cnaddid | ⊢ ( 0g ‘ 𝐺 )  =  0 | 
						
							| 15 | 14 | eqcomi | ⊢ 0  =  ( 0g ‘ 𝐺 ) | 
						
							| 16 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 17 | 10 13 15 16 | grpinvid1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  ℂ  ∧  - 𝐴  ∈  ℂ )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  =  - 𝐴  ↔  ( 𝐴  +  - 𝐴 )  =  0 ) ) | 
						
							| 18 | 5 6 7 17 | mp3an2i | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  =  - 𝐴  ↔  ( 𝐴  +  - 𝐴 )  =  0 ) ) | 
						
							| 19 | 2 18 | mpbird | ⊢ ( 𝐴  ∈  ℂ  →  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  =  - 𝐴 ) |