Step |
Hyp |
Ref |
Expression |
1 |
|
cnaddabl.g |
⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } |
2 |
|
negid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) |
3 |
1
|
cnaddabl |
⊢ 𝐺 ∈ Abel |
4 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
5 |
3 4
|
ax-mp |
⊢ 𝐺 ∈ Grp |
6 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
7 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
8 |
|
cnex |
⊢ ℂ ∈ V |
9 |
1
|
grpbase |
⊢ ( ℂ ∈ V → ℂ = ( Base ‘ 𝐺 ) ) |
10 |
8 9
|
ax-mp |
⊢ ℂ = ( Base ‘ 𝐺 ) |
11 |
|
addex |
⊢ + ∈ V |
12 |
1
|
grpplusg |
⊢ ( + ∈ V → + = ( +g ‘ 𝐺 ) ) |
13 |
11 12
|
ax-mp |
⊢ + = ( +g ‘ 𝐺 ) |
14 |
1
|
cnaddid |
⊢ ( 0g ‘ 𝐺 ) = 0 |
15 |
14
|
eqcomi |
⊢ 0 = ( 0g ‘ 𝐺 ) |
16 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
17 |
10 13 15 16
|
grpinvid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
18 |
5 6 7 17
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
19 |
2 18
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ) |