Step |
Hyp |
Ref |
Expression |
1 |
|
cnbdibl.a |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
2 |
|
cnbdibl.va |
⊢ ( 𝜑 → ( vol ‘ 𝐴 ) ∈ ℝ ) |
3 |
|
cnbdibl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
4 |
|
cnbdibl.bd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
5 |
|
cnmbf |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → 𝐹 ∈ MblFn ) |
6 |
1 3 5
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
7 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
8 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom 𝐹 = 𝐴 ) |
9 |
3 7 8
|
3syl |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( vol ‘ dom 𝐹 ) = ( vol ‘ 𝐴 ) ) |
11 |
10 2
|
eqeltrd |
⊢ ( 𝜑 → ( vol ‘ dom 𝐹 ) ∈ ℝ ) |
12 |
|
bddibl |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 ) |
13 |
6 11 4 12
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |