Step |
Hyp |
Ref |
Expression |
1 |
|
cnblcld.1 |
⊢ 𝐷 = ( abs ∘ − ) |
2 |
|
df-3an |
⊢ ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ) |
3 |
|
abscl |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ ) |
4 |
|
absge0 |
⊢ ( 𝑥 ∈ ℂ → 0 ≤ ( abs ‘ 𝑥 ) ) |
5 |
3 4
|
jca |
⊢ ( 𝑥 ∈ ℂ → ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ) |
7 |
6
|
biantrurd |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) < 𝑅 ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ) ) |
8 |
2 7
|
bitr4id |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ↔ ( abs ‘ 𝑥 ) < 𝑅 ) ) |
9 |
|
0re |
⊢ 0 ∈ ℝ |
10 |
|
simpl |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → 𝑅 ∈ ℝ* ) |
11 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ) ) |
12 |
9 10 11
|
sylancr |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) < 𝑅 ) ) ) |
13 |
|
0cn |
⊢ 0 ∈ ℂ |
14 |
1
|
cnmetdval |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 0 − 𝑥 ) ) ) |
15 |
|
abssub |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑥 ) ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
16 |
14 15
|
eqtrd |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
17 |
13 16
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
18 |
|
subid1 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 0 ) = 𝑥 ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ ( 𝑥 − 0 ) ) = ( abs ‘ 𝑥 ) ) |
20 |
17 19
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) ) |
22 |
21
|
breq1d |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( 0 𝐷 𝑥 ) < 𝑅 ↔ ( abs ‘ 𝑥 ) < 𝑅 ) ) |
23 |
8 12 22
|
3bitr4d |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( 0 𝐷 𝑥 ) < 𝑅 ) ) |
24 |
23
|
pm5.32da |
⊢ ( 𝑅 ∈ ℝ* → ( ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) < 𝑅 ) ) ) |
25 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
26 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
27 |
25 26
|
ax-mp |
⊢ abs Fn ℂ |
28 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ) ) ) |
29 |
27 28
|
mp1i |
⊢ ( 𝑅 ∈ ℝ* → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,) 𝑅 ) ) ) ) |
30 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
31 |
1 30
|
eqeltri |
⊢ 𝐷 ∈ ( ∞Met ‘ ℂ ) |
32 |
|
elbl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 𝑥 ∈ ( 0 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) < 𝑅 ) ) ) |
33 |
31 13 32
|
mp3an12 |
⊢ ( 𝑅 ∈ ℝ* → ( 𝑥 ∈ ( 0 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) < 𝑅 ) ) ) |
34 |
24 29 33
|
3bitr4d |
⊢ ( 𝑅 ∈ ℝ* → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ 𝑥 ∈ ( 0 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
35 |
34
|
eqrdv |
⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ 𝐷 ) 𝑅 ) ) |