Step |
Hyp |
Ref |
Expression |
1 |
|
cnblcld.1 |
⊢ 𝐷 = ( abs ∘ − ) |
2 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
3 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
4 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ) ) ) |
5 |
2 3 4
|
mp2b |
⊢ ( 𝑥 ∈ ( ◡ abs “ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ) ) |
6 |
|
df-3an |
⊢ ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) |
7 |
|
abscl |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ ) |
8 |
7
|
rexrd |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ* ) |
9 |
|
absge0 |
⊢ ( 𝑥 ∈ ℂ → 0 ≤ ( abs ‘ 𝑥 ) ) |
10 |
8 9
|
jca |
⊢ ( 𝑥 ∈ ℂ → ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ) |
12 |
11
|
biantrurd |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ≤ 𝑅 ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) ) |
13 |
6 12
|
bitr4id |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ↔ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) |
14 |
|
0xr |
⊢ 0 ∈ ℝ* |
15 |
|
simpl |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → 𝑅 ∈ ℝ* ) |
16 |
|
elicc1 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) ) |
17 |
14 15 16
|
sylancr |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) ) |
18 |
|
0cn |
⊢ 0 ∈ ℂ |
19 |
1
|
cnmetdval |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 0 − 𝑥 ) ) ) |
20 |
|
abssub |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑥 ) ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
21 |
19 20
|
eqtrd |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
22 |
18 21
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
23 |
|
subid1 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 0 ) = 𝑥 ) |
24 |
23
|
fveq2d |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ ( 𝑥 − 0 ) ) = ( abs ‘ 𝑥 ) ) |
25 |
22 24
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) ) |
27 |
26
|
breq1d |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( 0 𝐷 𝑥 ) ≤ 𝑅 ↔ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) |
28 |
13 17 27
|
3bitr4d |
⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ↔ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) ) |
29 |
28
|
pm5.32da |
⊢ ( 𝑅 ∈ ℝ* → ( ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) ) ) |
30 |
5 29
|
syl5bb |
⊢ ( 𝑅 ∈ ℝ* → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) ) ) |
31 |
30
|
abbi2dv |
⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,] 𝑅 ) ) = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) } ) |
32 |
|
df-rab |
⊢ { 𝑥 ∈ ℂ ∣ ( 0 𝐷 𝑥 ) ≤ 𝑅 } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) } |
33 |
31 32
|
eqtr4di |
⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,] 𝑅 ) ) = { 𝑥 ∈ ℂ ∣ ( 0 𝐷 𝑥 ) ≤ 𝑅 } ) |