Metamath Proof Explorer


Theorem cnblcld

Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypothesis cnblcld.1 𝐷 = ( abs ∘ − )
Assertion cnblcld ( 𝑅 ∈ ℝ* → ( abs “ ( 0 [,] 𝑅 ) ) = { 𝑥 ∈ ℂ ∣ ( 0 𝐷 𝑥 ) ≤ 𝑅 } )

Proof

Step Hyp Ref Expression
1 cnblcld.1 𝐷 = ( abs ∘ − )
2 absf abs : ℂ ⟶ ℝ
3 ffn ( abs : ℂ ⟶ ℝ → abs Fn ℂ )
4 elpreima ( abs Fn ℂ → ( 𝑥 ∈ ( abs “ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ) ) )
5 2 3 4 mp2b ( 𝑥 ∈ ( abs “ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ) )
6 df-3an ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) )
7 abscl ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ )
8 7 rexrd ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ* )
9 absge0 ( 𝑥 ∈ ℂ → 0 ≤ ( abs ‘ 𝑥 ) )
10 8 9 jca ( 𝑥 ∈ ℂ → ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) )
11 10 adantl ( ( 𝑅 ∈ ℝ*𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) )
12 11 biantrurd ( ( 𝑅 ∈ ℝ*𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ≤ 𝑅 ↔ ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) )
13 6 12 bitr4id ( ( 𝑅 ∈ ℝ*𝑥 ∈ ℂ ) → ( ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ↔ ( abs ‘ 𝑥 ) ≤ 𝑅 ) )
14 0xr 0 ∈ ℝ*
15 simpl ( ( 𝑅 ∈ ℝ*𝑥 ∈ ℂ ) → 𝑅 ∈ ℝ* )
16 elicc1 ( ( 0 ∈ ℝ*𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) )
17 14 15 16 sylancr ( ( 𝑅 ∈ ℝ*𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ↔ ( ( abs ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝑥 ) ∧ ( abs ‘ 𝑥 ) ≤ 𝑅 ) ) )
18 0cn 0 ∈ ℂ
19 1 cnmetdval ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 0 − 𝑥 ) ) )
20 abssub ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑥 ) ) = ( abs ‘ ( 𝑥 − 0 ) ) )
21 19 20 eqtrd ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) )
22 18 21 mpan ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ ( 𝑥 − 0 ) ) )
23 subid1 ( 𝑥 ∈ ℂ → ( 𝑥 − 0 ) = 𝑥 )
24 23 fveq2d ( 𝑥 ∈ ℂ → ( abs ‘ ( 𝑥 − 0 ) ) = ( abs ‘ 𝑥 ) )
25 22 24 eqtrd ( 𝑥 ∈ ℂ → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) )
26 25 adantl ( ( 𝑅 ∈ ℝ*𝑥 ∈ ℂ ) → ( 0 𝐷 𝑥 ) = ( abs ‘ 𝑥 ) )
27 26 breq1d ( ( 𝑅 ∈ ℝ*𝑥 ∈ ℂ ) → ( ( 0 𝐷 𝑥 ) ≤ 𝑅 ↔ ( abs ‘ 𝑥 ) ≤ 𝑅 ) )
28 13 17 27 3bitr4d ( ( 𝑅 ∈ ℝ*𝑥 ∈ ℂ ) → ( ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ↔ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) )
29 28 pm5.32da ( 𝑅 ∈ ℝ* → ( ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) ∈ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) ) )
30 5 29 syl5bb ( 𝑅 ∈ ℝ* → ( 𝑥 ∈ ( abs “ ( 0 [,] 𝑅 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) ) )
31 30 abbi2dv ( 𝑅 ∈ ℝ* → ( abs “ ( 0 [,] 𝑅 ) ) = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) } )
32 df-rab { 𝑥 ∈ ℂ ∣ ( 0 𝐷 𝑥 ) ≤ 𝑅 } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 0 𝐷 𝑥 ) ≤ 𝑅 ) }
33 31 32 eqtr4di ( 𝑅 ∈ ℝ* → ( abs “ ( 0 [,] 𝑅 ) ) = { 𝑥 ∈ ℂ ∣ ( 0 𝐷 𝑥 ) ≤ 𝑅 } )