Metamath Proof Explorer


Theorem cncdrg

Description: The only complete subfields of the complex numbers are RR and CC . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis resscdrg.1 𝐹 = ( ℂflds 𝐾 )
Assertion cncdrg ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ∈ { ℝ , ℂ } )

Proof

Step Hyp Ref Expression
1 resscdrg.1 𝐹 = ( ℂflds 𝐾 )
2 simp1 ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
3 1 resscdrg ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ℝ ⊆ 𝐾 )
4 cnsubrg ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝐾 ) → 𝐾 ∈ { ℝ , ℂ } )
5 2 3 4 syl2anc ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ∈ { ℝ , ℂ } )