Description: The only complete subfields of the complex numbers are RR and CC . (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resscdrg.1 | ⊢ 𝐹 = ( ℂfld ↾s 𝐾 ) | |
Assertion | cncdrg | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ∈ { ℝ , ℂ } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resscdrg.1 | ⊢ 𝐹 = ( ℂfld ↾s 𝐾 ) | |
2 | simp1 | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) | |
3 | 1 | resscdrg | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ℝ ⊆ 𝐾 ) |
4 | cnsubrg | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝐾 ) → 𝐾 ∈ { ℝ , ℂ } ) | |
5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ∈ { ℝ , ℂ } ) |