Step |
Hyp |
Ref |
Expression |
1 |
|
cncfcn.2 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
cncfcn.3 |
⊢ 𝐾 = ( 𝐽 ↾t 𝐴 ) |
3 |
|
cncfcn.4 |
⊢ 𝐿 = ( 𝐽 ↾t 𝐵 ) |
4 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) |
5 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) |
6 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) |
7 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) |
8 |
4 5 6 7
|
cncfmet |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) Cn ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
9 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
10 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐴 ⊆ ℂ ) |
11 |
1
|
cnfldtopn |
⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
12 |
4 11 6
|
metrest |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( 𝐽 ↾t 𝐴 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
13 |
9 10 12
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐽 ↾t 𝐴 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
14 |
2 13
|
syl5eq |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐾 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
15 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐵 ⊆ ℂ ) |
16 |
5 11 7
|
metrest |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐵 ⊆ ℂ ) → ( 𝐽 ↾t 𝐵 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) |
17 |
9 15 16
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐽 ↾t 𝐵 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) |
18 |
3 17
|
syl5eq |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐿 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) |
19 |
14 18
|
oveq12d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐾 Cn 𝐿 ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) Cn ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
20 |
8 19
|
eqtr4d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) = ( 𝐾 Cn 𝐿 ) ) |