| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfcn.2 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
cncfcn.3 |
⊢ 𝐾 = ( 𝐽 ↾t 𝐴 ) |
| 3 |
|
cncfcn.4 |
⊢ 𝐿 = ( 𝐽 ↾t 𝐵 ) |
| 4 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) |
| 5 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) |
| 6 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) |
| 7 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) |
| 8 |
4 5 6 7
|
cncfmet |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) Cn ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
| 9 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 10 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐴 ⊆ ℂ ) |
| 11 |
1
|
cnfldtopn |
⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 12 |
4 11 6
|
metrest |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( 𝐽 ↾t 𝐴 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 13 |
9 10 12
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐽 ↾t 𝐴 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 14 |
2 13
|
eqtrid |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐾 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐵 ⊆ ℂ ) |
| 16 |
5 11 7
|
metrest |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐵 ⊆ ℂ ) → ( 𝐽 ↾t 𝐵 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) |
| 17 |
9 15 16
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐽 ↾t 𝐵 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) |
| 18 |
3 17
|
eqtrid |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐿 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) |
| 19 |
14 18
|
oveq12d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐾 Cn 𝐿 ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) Cn ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
| 20 |
8 19
|
eqtr4d |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) = ( 𝐾 Cn 𝐿 ) ) |