Step |
Hyp |
Ref |
Expression |
1 |
|
cncfcnvcn.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
cncfcnvcn.k |
⊢ 𝐾 = ( 𝐽 ↾t 𝑋 ) |
3 |
|
simpr |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) |
4 |
|
cncfrss |
⊢ ( 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) → 𝑋 ⊆ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑋 ⊆ ℂ ) |
6 |
|
cncfrss2 |
⊢ ( 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) → 𝑌 ⊆ ℂ ) |
7 |
6
|
adantl |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑌 ⊆ ℂ ) |
8 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) |
9 |
1 2 8
|
cncfcn |
⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 –cn→ 𝑌 ) = ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ) |
10 |
5 7 9
|
syl2anc |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝑋 –cn→ 𝑌 ) = ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ) |
11 |
3 10
|
eleqtrd |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ) |
12 |
|
ishmeo |
⊢ ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ ( 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ∧ ◡ 𝐹 ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) ) |
13 |
12
|
baib |
⊢ ( 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) ) |
14 |
11 13
|
syl |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) ) |
15 |
1
|
cnfldtop |
⊢ 𝐽 ∈ Top |
16 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
17 |
16
|
toponunii |
⊢ ℂ = ∪ 𝐽 |
18 |
17
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ ) → 𝑋 = ∪ ( 𝐽 ↾t 𝑋 ) ) |
19 |
15 5 18
|
sylancr |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑋 = ∪ ( 𝐽 ↾t 𝑋 ) ) |
20 |
2
|
unieqi |
⊢ ∪ 𝐾 = ∪ ( 𝐽 ↾t 𝑋 ) |
21 |
19 20
|
eqtr4di |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑋 = ∪ 𝐾 ) |
22 |
21
|
f1oeq2d |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ↔ 𝐹 : ∪ 𝐾 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
23 |
17
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
24 |
15 7 23
|
sylancr |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
25 |
24
|
f1oeq3d |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ 𝐹 : 𝑋 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
26 |
|
simpl |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝐾 ∈ Comp ) |
27 |
1
|
cnfldhaus |
⊢ 𝐽 ∈ Haus |
28 |
|
cnex |
⊢ ℂ ∈ V |
29 |
28
|
ssex |
⊢ ( 𝑌 ⊆ ℂ → 𝑌 ∈ V ) |
30 |
7 29
|
syl |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑌 ∈ V ) |
31 |
|
resthaus |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝑌 ∈ V ) → ( 𝐽 ↾t 𝑌 ) ∈ Haus ) |
32 |
27 30 31
|
sylancr |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐽 ↾t 𝑌 ) ∈ Haus ) |
33 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
34 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t 𝑌 ) = ∪ ( 𝐽 ↾t 𝑌 ) |
35 |
33 34
|
cmphaushmeo |
⊢ ( ( 𝐾 ∈ Comp ∧ ( 𝐽 ↾t 𝑌 ) ∈ Haus ∧ 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ 𝐹 : ∪ 𝐾 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
36 |
26 32 11 35
|
syl3anc |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ 𝐹 : ∪ 𝐾 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
37 |
22 25 36
|
3bitr4d |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ) ) |
38 |
1 8 2
|
cncfcn |
⊢ ( ( 𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ ) → ( 𝑌 –cn→ 𝑋 ) = ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) |
39 |
7 5 38
|
syl2anc |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝑌 –cn→ 𝑋 ) = ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) |
40 |
39
|
eleq2d |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) ) |
41 |
14 37 40
|
3bitr4d |
⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) ) |