Metamath Proof Explorer


Theorem cncfcnvcn

Description: Rewrite cmphaushmeo for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses cncfcnvcn.j 𝐽 = ( TopOpen ‘ ℂfld )
cncfcnvcn.k 𝐾 = ( 𝐽t 𝑋 )
Assertion cncfcnvcn ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝐹 : 𝑋1-1-onto𝑌 𝐹 ∈ ( 𝑌cn𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 cncfcnvcn.j 𝐽 = ( TopOpen ‘ ℂfld )
2 cncfcnvcn.k 𝐾 = ( 𝐽t 𝑋 )
3 simpr ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → 𝐹 ∈ ( 𝑋cn𝑌 ) )
4 cncfrss ( 𝐹 ∈ ( 𝑋cn𝑌 ) → 𝑋 ⊆ ℂ )
5 4 adantl ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → 𝑋 ⊆ ℂ )
6 cncfrss2 ( 𝐹 ∈ ( 𝑋cn𝑌 ) → 𝑌 ⊆ ℂ )
7 6 adantl ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → 𝑌 ⊆ ℂ )
8 eqid ( 𝐽t 𝑌 ) = ( 𝐽t 𝑌 )
9 1 2 8 cncfcn ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋cn𝑌 ) = ( 𝐾 Cn ( 𝐽t 𝑌 ) ) )
10 5 7 9 syl2anc ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝑋cn𝑌 ) = ( 𝐾 Cn ( 𝐽t 𝑌 ) ) )
11 3 10 eleqtrd ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → 𝐹 ∈ ( 𝐾 Cn ( 𝐽t 𝑌 ) ) )
12 ishmeo ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽t 𝑌 ) ) ↔ ( 𝐹 ∈ ( 𝐾 Cn ( 𝐽t 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽t 𝑌 ) Cn 𝐾 ) ) )
13 12 baib ( 𝐹 ∈ ( 𝐾 Cn ( 𝐽t 𝑌 ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽t 𝑌 ) ) ↔ 𝐹 ∈ ( ( 𝐽t 𝑌 ) Cn 𝐾 ) ) )
14 11 13 syl ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽t 𝑌 ) ) ↔ 𝐹 ∈ ( ( 𝐽t 𝑌 ) Cn 𝐾 ) ) )
15 1 cnfldtop 𝐽 ∈ Top
16 1 cnfldtopon 𝐽 ∈ ( TopOn ‘ ℂ )
17 16 toponunii ℂ = 𝐽
18 17 restuni ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ ) → 𝑋 = ( 𝐽t 𝑋 ) )
19 15 5 18 sylancr ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → 𝑋 = ( 𝐽t 𝑋 ) )
20 2 unieqi 𝐾 = ( 𝐽t 𝑋 )
21 19 20 eqtr4di ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → 𝑋 = 𝐾 )
22 21 f1oeq2d ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝐹 : 𝑋1-1-onto ( 𝐽t 𝑌 ) ↔ 𝐹 : 𝐾1-1-onto ( 𝐽t 𝑌 ) ) )
23 17 restuni ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ ) → 𝑌 = ( 𝐽t 𝑌 ) )
24 15 7 23 sylancr ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → 𝑌 = ( 𝐽t 𝑌 ) )
25 24 f1oeq3d ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝐹 : 𝑋1-1-onto𝑌𝐹 : 𝑋1-1-onto ( 𝐽t 𝑌 ) ) )
26 simpl ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → 𝐾 ∈ Comp )
27 1 cnfldhaus 𝐽 ∈ Haus
28 cnex ℂ ∈ V
29 28 ssex ( 𝑌 ⊆ ℂ → 𝑌 ∈ V )
30 7 29 syl ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → 𝑌 ∈ V )
31 resthaus ( ( 𝐽 ∈ Haus ∧ 𝑌 ∈ V ) → ( 𝐽t 𝑌 ) ∈ Haus )
32 27 30 31 sylancr ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝐽t 𝑌 ) ∈ Haus )
33 eqid 𝐾 = 𝐾
34 eqid ( 𝐽t 𝑌 ) = ( 𝐽t 𝑌 )
35 33 34 cmphaushmeo ( ( 𝐾 ∈ Comp ∧ ( 𝐽t 𝑌 ) ∈ Haus ∧ 𝐹 ∈ ( 𝐾 Cn ( 𝐽t 𝑌 ) ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽t 𝑌 ) ) ↔ 𝐹 : 𝐾1-1-onto ( 𝐽t 𝑌 ) ) )
36 26 32 11 35 syl3anc ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽t 𝑌 ) ) ↔ 𝐹 : 𝐾1-1-onto ( 𝐽t 𝑌 ) ) )
37 22 25 36 3bitr4d ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝐹 : 𝑋1-1-onto𝑌𝐹 ∈ ( 𝐾 Homeo ( 𝐽t 𝑌 ) ) ) )
38 1 8 2 cncfcn ( ( 𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ ) → ( 𝑌cn𝑋 ) = ( ( 𝐽t 𝑌 ) Cn 𝐾 ) )
39 7 5 38 syl2anc ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝑌cn𝑋 ) = ( ( 𝐽t 𝑌 ) Cn 𝐾 ) )
40 39 eleq2d ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝐹 ∈ ( 𝑌cn𝑋 ) ↔ 𝐹 ∈ ( ( 𝐽t 𝑌 ) Cn 𝐾 ) ) )
41 14 37 40 3bitr4d ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋cn𝑌 ) ) → ( 𝐹 : 𝑋1-1-onto𝑌 𝐹 ∈ ( 𝑌cn𝑋 ) ) )