Step |
Hyp |
Ref |
Expression |
1 |
|
cncfcompt.bcn |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |
2 |
|
cncfcompt.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 –cn→ 𝐷 ) ) |
3 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐶 –cn→ 𝐷 ) → 𝐹 : 𝐶 ⟶ 𝐷 ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐷 ) |
5 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐶 ⟶ 𝐷 ) |
6 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) |
8 |
7
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
9 |
5 8
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) |
10 |
9
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ 𝐷 ) |
11 |
|
cncfrss2 |
⊢ ( 𝐹 ∈ ( 𝐶 –cn→ 𝐷 ) → 𝐷 ⊆ ℂ ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
14 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
16 |
8 13 14 15
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) |
17 |
|
ssid |
⊢ ℂ ⊆ ℂ |
18 |
|
cncfss |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐶 –cn→ 𝐷 ) ⊆ ( 𝐶 –cn→ ℂ ) ) |
19 |
12 17 18
|
sylancl |
⊢ ( 𝜑 → ( 𝐶 –cn→ 𝐷 ) ⊆ ( 𝐶 –cn→ ℂ ) ) |
20 |
19 2
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 –cn→ ℂ ) ) |
21 |
1 20
|
cncfco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
22 |
16 21
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
23 |
|
cncffvrn |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ 𝐷 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ 𝐷 ) ) |
24 |
12 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ 𝐷 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ 𝐷 ) ) |
25 |
10 24
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ 𝐷 ) ) |