| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cncfcompt.bcn | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( 𝐴 –cn→ 𝐶 ) ) | 
						
							| 2 |  | cncfcompt.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶 –cn→ 𝐷 ) ) | 
						
							| 3 |  | cncff | ⊢ ( 𝐹  ∈  ( 𝐶 –cn→ 𝐷 )  →  𝐹 : 𝐶 ⟶ 𝐷 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐶 ⟶ 𝐷 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐹 : 𝐶 ⟶ 𝐷 ) | 
						
							| 6 |  | cncff | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( 𝐴 –cn→ 𝐶 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ 𝐶 ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ 𝐶 ) | 
						
							| 8 | 7 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝐶 ) | 
						
							| 9 | 5 8 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝐵 )  ∈  𝐷 ) | 
						
							| 10 | 9 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ 𝐷 ) | 
						
							| 11 |  | cncfrss2 | ⊢ ( 𝐹  ∈  ( 𝐶 –cn→ 𝐷 )  →  𝐷  ⊆  ℂ ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  𝐷  ⊆  ℂ ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 14 | 4 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 16 | 8 13 14 15 | fmptco | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 17 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 18 |  | cncfss | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝐶 –cn→ 𝐷 )  ⊆  ( 𝐶 –cn→ ℂ ) ) | 
						
							| 19 | 12 17 18 | sylancl | ⊢ ( 𝜑  →  ( 𝐶 –cn→ 𝐷 )  ⊆  ( 𝐶 –cn→ ℂ ) ) | 
						
							| 20 | 19 2 | sseldd | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶 –cn→ ℂ ) ) | 
						
							| 21 | 1 20 | cncfco | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 22 | 16 21 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 23 |  | cncfcdm | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  ( 𝐴 –cn→ ℂ ) )  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  ( 𝐴 –cn→ 𝐷 )  ↔  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ 𝐷 ) ) | 
						
							| 24 | 12 22 23 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  ( 𝐴 –cn→ 𝐷 )  ↔  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ 𝐷 ) ) | 
						
							| 25 | 10 24 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  ( 𝐴 –cn→ 𝐷 ) ) |