Metamath Proof Explorer


Theorem cncfcompt

Description: Composition of continuous functions. A generalization of cncfmpt1f to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfcompt.bcn ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( 𝐴cn𝐶 ) )
cncfcompt.f ( 𝜑𝐹 ∈ ( 𝐶cn𝐷 ) )
Assertion cncfcompt ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) ∈ ( 𝐴cn𝐷 ) )

Proof

Step Hyp Ref Expression
1 cncfcompt.bcn ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( 𝐴cn𝐶 ) )
2 cncfcompt.f ( 𝜑𝐹 ∈ ( 𝐶cn𝐷 ) )
3 cncff ( 𝐹 ∈ ( 𝐶cn𝐷 ) → 𝐹 : 𝐶𝐷 )
4 2 3 syl ( 𝜑𝐹 : 𝐶𝐷 )
5 4 adantr ( ( 𝜑𝑥𝐴 ) → 𝐹 : 𝐶𝐷 )
6 cncff ( ( 𝑥𝐴𝐵 ) ∈ ( 𝐴cn𝐶 ) → ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )
7 1 6 syl ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )
8 7 fvmptelrn ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
9 5 8 ffvelrnd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝐵 ) ∈ 𝐷 )
10 9 fmpttd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) : 𝐴𝐷 )
11 cncfrss2 ( 𝐹 ∈ ( 𝐶cn𝐷 ) → 𝐷 ⊆ ℂ )
12 2 11 syl ( 𝜑𝐷 ⊆ ℂ )
13 eqidd ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 ) )
14 4 feqmptd ( 𝜑𝐹 = ( 𝑦𝐶 ↦ ( 𝐹𝑦 ) ) )
15 fveq2 ( 𝑦 = 𝐵 → ( 𝐹𝑦 ) = ( 𝐹𝐵 ) )
16 8 13 14 15 fmptco ( 𝜑 → ( 𝐹 ∘ ( 𝑥𝐴𝐵 ) ) = ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) )
17 ssid ℂ ⊆ ℂ
18 cncfss ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐶cn𝐷 ) ⊆ ( 𝐶cn→ ℂ ) )
19 12 17 18 sylancl ( 𝜑 → ( 𝐶cn𝐷 ) ⊆ ( 𝐶cn→ ℂ ) )
20 19 2 sseldd ( 𝜑𝐹 ∈ ( 𝐶cn→ ℂ ) )
21 1 20 cncfco ( 𝜑 → ( 𝐹 ∘ ( 𝑥𝐴𝐵 ) ) ∈ ( 𝐴cn→ ℂ ) )
22 16 21 eqeltrrd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) ∈ ( 𝐴cn→ ℂ ) )
23 cncffvrn ( ( 𝐷 ⊆ ℂ ∧ ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) ∈ ( 𝐴cn→ ℂ ) ) → ( ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) ∈ ( 𝐴cn𝐷 ) ↔ ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) : 𝐴𝐷 ) )
24 12 22 23 syl2anc ( 𝜑 → ( ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) ∈ ( 𝐴cn𝐷 ) ↔ ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) : 𝐴𝐷 ) )
25 10 24 mpbird ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐹𝐵 ) ) ∈ ( 𝐴cn𝐷 ) )