Step |
Hyp |
Ref |
Expression |
1 |
|
cncfcompt2.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
cncfcompt2.ab |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ∈ ( 𝐴 –cn→ 𝐵 ) ) |
3 |
|
cncfcompt2.cd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∈ ( 𝐶 –cn→ 𝐸 ) ) |
4 |
|
cncfcompt2.bc |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
5 |
|
cncfcompt2.st |
⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) |
6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
7 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ 𝐵 ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ 𝐵 ) |
9 |
8
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ 𝐵 ) |
10 |
6 9
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ 𝐶 ) |
11 |
10
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑅 ∈ 𝐶 ) ) |
12 |
1 11
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐶 ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
14 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) = ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ) |
15 |
12 13 14 5
|
fmptcof |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) = ( ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) ) |
17 |
|
cncfrss |
⊢ ( ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∈ ( 𝐶 –cn→ 𝐸 ) → 𝐶 ⊆ ℂ ) |
18 |
3 17
|
syl |
⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) |
19 |
|
cncfss |
⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) ⊆ ( 𝐴 –cn→ 𝐶 ) ) |
20 |
4 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 –cn→ 𝐵 ) ⊆ ( 𝐴 –cn→ 𝐶 ) ) |
21 |
20 2
|
sseldd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |
22 |
21 3
|
cncfco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) ∈ ( 𝐴 –cn→ 𝐸 ) ) |
23 |
16 22
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ∈ ( 𝐴 –cn→ 𝐸 ) ) |