Metamath Proof Explorer


Theorem cncffvrn

Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion cncffvrn ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴cn𝐵 ) ) → ( 𝐹 ∈ ( 𝐴cn𝐶 ) ↔ 𝐹 : 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 cncfi ( ( 𝐹 ∈ ( 𝐴cn𝐵 ) ∧ 𝑥𝐴𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑤𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑤 ) − ( 𝐹𝑥 ) ) ) < 𝑦 ) )
2 1 3expb ( ( 𝐹 ∈ ( 𝐴cn𝐵 ) ∧ ( 𝑥𝐴𝑦 ∈ ℝ+ ) ) → ∃ 𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑤𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑤 ) − ( 𝐹𝑥 ) ) ) < 𝑦 ) )
3 2 ralrimivva ( 𝐹 ∈ ( 𝐴cn𝐵 ) → ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑤𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑤 ) − ( 𝐹𝑥 ) ) ) < 𝑦 ) )
4 3 adantl ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴cn𝐵 ) ) → ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑤𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑤 ) − ( 𝐹𝑥 ) ) ) < 𝑦 ) )
5 cncfrss ( 𝐹 ∈ ( 𝐴cn𝐵 ) → 𝐴 ⊆ ℂ )
6 simpl ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴cn𝐵 ) ) → 𝐶 ⊆ ℂ )
7 elcncf2 ( ( 𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴cn𝐶 ) ↔ ( 𝐹 : 𝐴𝐶 ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑤𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑤 ) − ( 𝐹𝑥 ) ) ) < 𝑦 ) ) ) )
8 5 6 7 syl2an2 ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴cn𝐵 ) ) → ( 𝐹 ∈ ( 𝐴cn𝐶 ) ↔ ( 𝐹 : 𝐴𝐶 ∧ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑤𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹𝑤 ) − ( 𝐹𝑥 ) ) ) < 𝑦 ) ) ) )
9 4 8 mpbiran2d ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴cn𝐵 ) ) → ( 𝐹 ∈ ( 𝐴cn𝐶 ) ↔ 𝐹 : 𝐴𝐶 ) )