Step |
Hyp |
Ref |
Expression |
1 |
|
cncfrss |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐴 ⊆ ℂ ) |
2 |
|
cncfrss2 |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐵 ⊆ ℂ ) |
3 |
|
elcncf2 |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
5 |
4
|
ibi |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
6 |
5
|
simprd |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝑤 − 𝑥 ) = ( 𝑤 − 𝐶 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑥 = 𝐶 → ( abs ‘ ( 𝑤 − 𝑥 ) ) = ( abs ‘ ( 𝑤 − 𝐶 ) ) ) |
9 |
8
|
breq1d |
⊢ ( 𝑥 = 𝐶 → ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 ↔ ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐶 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑥 = 𝐶 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
13 |
12
|
breq1d |
⊢ ( 𝑥 = 𝐶 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ) |
14 |
9 13
|
imbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ) ) |
15 |
14
|
rexralbidv |
⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ) ) |
16 |
|
breq2 |
⊢ ( 𝑦 = 𝑅 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑦 = 𝑅 → ( ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) ) |
18 |
17
|
rexralbidv |
⊢ ( 𝑦 = 𝑅 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) ) |
19 |
15 18
|
rspc2v |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) ) |
20 |
6 19
|
mpan9 |
⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+ ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) |
21 |
20
|
3impb |
⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) |