Step |
Hyp |
Ref |
Expression |
1 |
|
cncficcgt0.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) |
2 |
|
cncficcgt0.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
cncficcgt0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
cncficcgt0.aleb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
cncficcgt0.fcn |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ) |
6 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) ) |
7 |
|
ffun |
⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) → Fun 𝐹 ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) |
11 |
5 6
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) ) |
12 |
11
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) |
13 |
12
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
15 |
10 14
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑐 ∈ dom 𝐹 ) |
16 |
|
fvco |
⊢ ( ( Fun 𝐹 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) = ( abs ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
17 |
9 15 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) = ( abs ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
18 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ( ℝ ∖ { 0 } ) ) |
19 |
18
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℝ ) |
20 |
19
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℂ ) |
21 |
|
eldifsni |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ( ℝ ∖ { 0 } ) → ( 𝐹 ‘ 𝑐 ) ≠ 0 ) |
22 |
18 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ≠ 0 ) |
23 |
20 22
|
absrpcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ ℝ+ ) |
24 |
17 23
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ∈ ℝ+ ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ∈ ℝ+ ) |
26 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐴 [,] 𝐵 ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑥 abs |
29 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) |
30 |
1 29
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
31 |
28 30
|
nfco |
⊢ Ⅎ 𝑥 ( abs ∘ 𝐹 ) |
32 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑐 |
33 |
31 32
|
nffv |
⊢ Ⅎ 𝑥 ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
35 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑑 |
36 |
31 35
|
nffv |
⊢ Ⅎ 𝑥 ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) |
37 |
33 34 36
|
nfbr |
⊢ Ⅎ 𝑥 ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) |
38 |
27 37
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) |
39 |
26 38
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) |
40 |
|
fveq2 |
⊢ ( 𝑑 = 𝑥 → ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) = ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
41 |
40
|
breq2d |
⊢ ( 𝑑 = 𝑥 → ( ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ↔ ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
42 |
41
|
rspccva |
⊢ ( ( ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
43 |
42
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
44 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
45 |
44
|
a1i |
⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
46 |
|
difss |
⊢ ( ℝ ∖ { 0 } ) ⊆ ℝ |
47 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
48 |
46 47
|
sstri |
⊢ ( ℝ ∖ { 0 } ) ⊆ ℂ |
49 |
48
|
a1i |
⊢ ( 𝜑 → ( ℝ ∖ { 0 } ) ⊆ ℂ ) |
50 |
11 49
|
fssd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
51 |
|
fcompt |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) → ( abs ∘ 𝐹 ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
52 |
45 50 51
|
syl2anc |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
54 |
30 53
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
55 |
28 54
|
nffv |
⊢ Ⅎ 𝑥 ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) |
56 |
|
nfcv |
⊢ Ⅎ 𝑧 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) |
57 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
58 |
57
|
fveq2d |
⊢ ( 𝑧 = 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
59 |
55 56 58
|
cbvmpt |
⊢ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
60 |
59
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
61 |
1
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ) |
62 |
61 11
|
feq1dd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) ) |
63 |
62
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ( ℝ ∖ { 0 } ) ) |
64 |
61 63
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
65 |
64
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ 𝐶 ) ) |
66 |
65
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ 𝐶 ) ) ) |
67 |
52 60 66
|
3eqtrd |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ 𝐶 ) ) ) |
68 |
48 63
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℂ ) |
69 |
68
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
70 |
67 69
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ 𝐶 ) ) |
71 |
70
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ 𝐶 ) ) |
72 |
43 71
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) |
73 |
72
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) ) |
74 |
39 73
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) |
75 |
33
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) |
76 |
|
breq1 |
⊢ ( 𝑦 = ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) → ( 𝑦 ≤ ( abs ‘ 𝐶 ) ↔ ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) ) |
77 |
75 76
|
ralbid |
⊢ ( 𝑦 = ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) ) |
78 |
77
|
rspcev |
⊢ ( ( ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |
79 |
25 74 78
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |
80 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
81 |
|
cncfss |
⊢ ( ( ( ℝ ∖ { 0 } ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
82 |
49 80 81
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
83 |
82 5
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
84 |
|
abscncf |
⊢ abs ∈ ( ℂ –cn→ ℝ ) |
85 |
84
|
a1i |
⊢ ( 𝜑 → abs ∈ ( ℂ –cn→ ℝ ) ) |
86 |
83 85
|
cncfco |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
87 |
2 3 4 86
|
evthicc |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑏 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑎 ) ∧ ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
88 |
87
|
simprd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) |
89 |
79 88
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |