Step |
Hyp |
Ref |
Expression |
1 |
|
cncfioobd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
cncfioobd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
cncfioobd.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
4 |
|
cncfioobd.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
5 |
|
cncfioobd.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
6 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
7 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
8 |
6 7 1 2 3 4 5
|
cncfiooicc |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
9 |
|
cniccbdd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
10 |
1 2 8 9
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ ℝ ) |
12 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
15 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
17 |
16
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 (,) 𝐵 ) ) |
18 |
17
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) = dom 𝐹 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) = dom 𝐹 ) |
20 |
14 19
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ dom 𝐹 ) |
21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝐴 ∈ ℝ ) |
22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝐵 ∈ ℝ ) |
23 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝑦 ∈ dom 𝐹 ) |
25 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → dom 𝐹 = ( 𝐴 (,) 𝐵 ) ) |
26 |
24 25
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
27 |
21 22 23 7 26
|
cncfioobdlem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
28 |
20 27
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
29 |
28
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) |
30 |
29
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ) |
31 |
30
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ) |
32 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
33 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
34 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
35 |
33 34
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
36 |
|
rspa |
⊢ ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
37 |
32 35 36
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
38 |
31 37
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
39 |
38
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
40 |
13 39
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
41 |
40
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
42 |
41
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
43 |
10 42
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |