Metamath Proof Explorer


Theorem cncfioobd

Description: A continuous function F on an open interval ( A (,) B ) with a finite right limit R in A and a finite left limit L in B is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfioobd.a ( 𝜑𝐴 ∈ ℝ )
cncfioobd.b ( 𝜑𝐵 ∈ ℝ )
cncfioobd.f ( 𝜑𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
cncfioobd.l ( 𝜑𝐿 ∈ ( 𝐹 lim 𝐵 ) )
cncfioobd.r ( 𝜑𝑅 ∈ ( 𝐹 lim 𝐴 ) )
Assertion cncfioobd ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )

Proof

Step Hyp Ref Expression
1 cncfioobd.a ( 𝜑𝐴 ∈ ℝ )
2 cncfioobd.b ( 𝜑𝐵 ∈ ℝ )
3 cncfioobd.f ( 𝜑𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
4 cncfioobd.l ( 𝜑𝐿 ∈ ( 𝐹 lim 𝐵 ) )
5 cncfioobd.r ( 𝜑𝑅 ∈ ( 𝐹 lim 𝐴 ) )
6 nfv 𝑧 𝜑
7 eqid ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) )
8 6 7 1 2 3 4 5 cncfiooicc ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
9 cniccbdd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 )
10 1 2 8 9 syl3anc ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 )
11 nfv 𝑦 ( 𝜑𝑥 ∈ ℝ )
12 nfra1 𝑦𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥
13 11 12 nfan 𝑦 ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 )
14 simpr ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) )
15 cncff ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
16 3 15 syl ( 𝜑𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
17 16 fdmd ( 𝜑 → dom 𝐹 = ( 𝐴 (,) 𝐵 ) )
18 17 eqcomd ( 𝜑 → ( 𝐴 (,) 𝐵 ) = dom 𝐹 )
19 18 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) = dom 𝐹 )
20 14 19 eleqtrd ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ dom 𝐹 )
21 1 adantr ( ( 𝜑𝑦 ∈ dom 𝐹 ) → 𝐴 ∈ ℝ )
22 2 adantr ( ( 𝜑𝑦 ∈ dom 𝐹 ) → 𝐵 ∈ ℝ )
23 16 adantr ( ( 𝜑𝑦 ∈ dom 𝐹 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
24 simpr ( ( 𝜑𝑦 ∈ dom 𝐹 ) → 𝑦 ∈ dom 𝐹 )
25 17 adantr ( ( 𝜑𝑦 ∈ dom 𝐹 ) → dom 𝐹 = ( 𝐴 (,) 𝐵 ) )
26 24 25 eleqtrd ( ( 𝜑𝑦 ∈ dom 𝐹 ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) )
27 21 22 23 7 26 cncfioobdlem ( ( 𝜑𝑦 ∈ dom 𝐹 ) → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
28 20 27 syldan ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
29 28 eqcomd ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹𝑦 ) = ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) )
30 29 fveq2d ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹𝑦 ) ) = ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) )
31 30 ad4ant14 ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹𝑦 ) ) = ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) )
32 simplr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 )
33 ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
34 simpr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) )
35 33 34 sselid ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) )
36 rspa ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 )
37 32 35 36 syl2anc ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 )
38 31 37 eqbrtrd ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
39 38 ex ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 ) )
40 13 39 ralrimi ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
41 40 ex ( ( 𝜑𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 ) )
42 41 reximdva ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 ) )
43 10 42 mpd ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )