Step |
Hyp |
Ref |
Expression |
1 |
|
cncfioobdlem.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
cncfioobdlem.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
cncfioobdlem.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ 𝑉 ) |
4 |
|
cncfioobdlem.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
5 |
|
cncfioobdlem.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
6 |
4
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐴 ∈ ℝ ) |
8 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
9 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
10 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
12 |
5 11
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) |
13 |
12
|
simp2d |
⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐴 < 𝐶 ) |
15 |
|
eqcom |
⊢ ( 𝑥 = 𝐶 ↔ 𝐶 = 𝑥 ) |
16 |
15
|
biimpi |
⊢ ( 𝑥 = 𝐶 → 𝐶 = 𝑥 ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐶 = 𝑥 ) |
18 |
14 17
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐴 < 𝑥 ) |
19 |
7 18
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 ≠ 𝐴 ) |
20 |
19
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → ¬ 𝑥 = 𝐴 ) |
21 |
20
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) |
23 |
5
|
elioored |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐶 ∈ ℝ ) |
25 |
22 24
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 ∈ ℝ ) |
26 |
12
|
simp3d |
⊢ ( 𝜑 → 𝐶 < 𝐵 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐶 < 𝐵 ) |
28 |
22 27
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 < 𝐵 ) |
29 |
25 28
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 ≠ 𝐵 ) |
30 |
29
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → ¬ 𝑥 = 𝐵 ) |
31 |
30
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
32 |
22
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐶 ) ) |
33 |
21 31 32
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝐶 ) ) |
34 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
35 |
34 5
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
36 |
3 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ 𝑉 ) |
37 |
6 33 35 36
|
fvmptd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) = ( 𝐹 ‘ 𝐶 ) ) |