| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cncfioobdlem.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							cncfioobdlem.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							cncfioobdlem.f | 
							⊢ ( 𝜑  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ 𝑉 )  | 
						
						
							| 4 | 
							
								
							 | 
							cncfioobdlem.g | 
							⊢ 𝐺  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							cncfioobdlem.c | 
							⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 6 | 
							
								4
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 8 | 
							
								1
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ* )  | 
						
						
							| 9 | 
							
								2
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ* )  | 
						
						
							| 10 | 
							
								
							 | 
							elioo2 | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐶  ∈  ℝ  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simp2d | 
							⊢ ( 𝜑  →  𝐴  <  𝐶 )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝐴  <  𝐶 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑥  =  𝐶  ↔  𝐶  =  𝑥 )  | 
						
						
							| 16 | 
							
								15
							 | 
							biimpi | 
							⊢ ( 𝑥  =  𝐶  →  𝐶  =  𝑥 )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝐶  =  𝑥 )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝐴  <  𝑥 )  | 
						
						
							| 19 | 
							
								7 18
							 | 
							gtned | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝑥  ≠  𝐴 )  | 
						
						
							| 20 | 
							
								19
							 | 
							neneqd | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  ¬  𝑥  =  𝐴 )  | 
						
						
							| 21 | 
							
								20
							 | 
							iffalsed | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝑥  =  𝐶 )  | 
						
						
							| 23 | 
							
								5
							 | 
							elioored | 
							⊢ ( 𝜑  →  𝐶  ∈  ℝ )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝐶  ∈  ℝ )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 26 | 
							
								12
							 | 
							simp3d | 
							⊢ ( 𝜑  →  𝐶  <  𝐵 )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝐶  <  𝐵 )  | 
						
						
							| 28 | 
							
								22 27
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝑥  <  𝐵 )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							ltned | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  𝑥  ≠  𝐵 )  | 
						
						
							| 30 | 
							
								29
							 | 
							neneqd | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  ¬  𝑥  =  𝐵 )  | 
						
						
							| 31 | 
							
								30
							 | 
							iffalsed | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 32 | 
							
								22
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐶 ) )  | 
						
						
							| 33 | 
							
								21 31 32
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ 𝐶 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							ioossicc | 
							⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 )  | 
						
						
							| 35 | 
							
								34 5
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 36 | 
							
								3 5
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐶 )  ∈  𝑉 )  | 
						
						
							| 37 | 
							
								6 33 35 36
							 | 
							fvmptd | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐶 )  =  ( 𝐹 ‘ 𝐶 ) )  |