| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cncfiooicc.x | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							cncfiooicc.g | 
							⊢ 𝐺  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cncfiooicc.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							cncfiooicc.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							cncfiooicc.f | 
							⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							cncfiooicc.l | 
							⊢ ( 𝜑  →  𝐿  ∈  ( 𝐹  limℂ  𝐵 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cncfiooicc.r | 
							⊢ ( 𝜑  →  𝑅  ∈  ( 𝐹  limℂ  𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝐴  <  𝐵 )  | 
						
						
							| 9 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  <  𝐵 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 10 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  <  𝐵 )  →  𝐵  ∈  ℝ )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝐴  <  𝐵 )  →  𝐴  <  𝐵 )  | 
						
						
							| 12 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  <  𝐵 )  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 13 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  <  𝐵 )  →  𝐿  ∈  ( 𝐹  limℂ  𝐵 ) )  | 
						
						
							| 14 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  <  𝐵 )  →  𝑅  ∈  ( 𝐹  limℂ  𝐴 ) )  | 
						
						
							| 15 | 
							
								8 2 9 10 11 12 13 14
							 | 
							cncfiooicclem1 | 
							⊢ ( ( 𝜑  ∧  𝐴  <  𝐵 )  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 16 | 
							
								
							 | 
							limccl | 
							⊢ ( 𝐹  limℂ  𝐴 )  ⊆  ℂ  | 
						
						
							| 17 | 
							
								16 7
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝑅  ∈  ℂ )  | 
						
						
							| 18 | 
							
								17
							 | 
							snssd | 
							⊢ ( 𝜑  →  { 𝑅 }  ⊆  ℂ )  | 
						
						
							| 19 | 
							
								
							 | 
							ssid | 
							⊢ ℂ  ⊆  ℂ  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							⊢ ( 𝜑  →  ℂ  ⊆  ℂ )  | 
						
						
							| 21 | 
							
								
							 | 
							cncfss | 
							⊢ ( ( { 𝑅 }  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( { 𝐴 } –cn→ { 𝑅 } )  ⊆  ( { 𝐴 } –cn→ ℂ ) )  | 
						
						
							| 22 | 
							
								18 20 21
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( { 𝐴 } –cn→ { 𝑅 } )  ⊆  ( { 𝐴 } –cn→ ℂ ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( { 𝐴 } –cn→ { 𝑅 } )  ⊆  ( { 𝐴 } –cn→ ℂ ) )  | 
						
						
							| 24 | 
							
								3
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ* )  | 
						
						
							| 25 | 
							
								
							 | 
							iccid | 
							⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴 [,] 𝐴 )  =  { 𝐴 } )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐴 [,] 𝐴 )  =  { 𝐴 } )  | 
						
						
							| 27 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝐴 [,] 𝐴 )  =  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sylan9req | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  { 𝐴 }  =  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝐴 [,] 𝐵 )  =  { 𝐴 } )  | 
						
						
							| 30 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐵 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 31 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐵 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴 [,] 𝐵 )  =  { 𝐴 } )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							eleqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐵 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  { 𝐴 } )  | 
						
						
							| 33 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑥  ∈  { 𝐴 }  →  𝑥  =  𝐴 )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐵 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  =  𝐴 )  | 
						
						
							| 35 | 
							
								34
							 | 
							iftrued | 
							⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐵 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  𝑅 )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							mpteq12dva | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  { 𝐴 }  ↦  𝑅 ) )  | 
						
						
							| 37 | 
							
								2 36
							 | 
							eqtrid | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐺  =  ( 𝑥  ∈  { 𝐴 }  ↦  𝑅 ) )  | 
						
						
							| 38 | 
							
								3
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 40 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝑅  ∈  ℂ )  | 
						
						
							| 41 | 
							
								
							 | 
							cncfdmsn | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( 𝑥  ∈  { 𝐴 }  ↦  𝑅 )  ∈  ( { 𝐴 } –cn→ { 𝑅 } ) )  | 
						
						
							| 42 | 
							
								39 40 41
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝑥  ∈  { 𝐴 }  ↦  𝑅 )  ∈  ( { 𝐴 } –cn→ { 𝑅 } ) )  | 
						
						
							| 43 | 
							
								37 42
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐺  ∈  ( { 𝐴 } –cn→ { 𝑅 } ) )  | 
						
						
							| 44 | 
							
								23 43
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐺  ∈  ( { 𝐴 } –cn→ ℂ ) )  | 
						
						
							| 45 | 
							
								28
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( { 𝐴 } –cn→ ℂ )  =  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							eleqtrd | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  𝐴  =  𝐵 )  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 48 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  ¬  𝐴  =  𝐵 )  →  𝜑 )  | 
						
						
							| 49 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 )  | 
						
						
							| 50 | 
							
								49
							 | 
							biimpi | 
							⊢ ( 𝐵  =  𝐴  →  𝐴  =  𝐵 )  | 
						
						
							| 51 | 
							
								50
							 | 
							con3i | 
							⊢ ( ¬  𝐴  =  𝐵  →  ¬  𝐵  =  𝐴 )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐵  =  𝐴 )  | 
						
						
							| 53 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  <  𝐵 )  | 
						
						
							| 54 | 
							
								
							 | 
							pm4.56 | 
							⊢ ( ( ¬  𝐵  =  𝐴  ∧  ¬  𝐴  <  𝐵 )  ↔  ¬  ( 𝐵  =  𝐴  ∨  𝐴  <  𝐵 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							biimpi | 
							⊢ ( ( ¬  𝐵  =  𝐴  ∧  ¬  𝐴  <  𝐵 )  →  ¬  ( 𝐵  =  𝐴  ∨  𝐴  <  𝐵 ) )  | 
						
						
							| 56 | 
							
								52 53 55
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  ¬  𝐴  =  𝐵 )  →  ¬  ( 𝐵  =  𝐴  ∨  𝐴  <  𝐵 ) )  | 
						
						
							| 57 | 
							
								48 4
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ∈  ℝ )  | 
						
						
							| 58 | 
							
								48 3
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  ¬  𝐴  =  𝐵 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 59 | 
							
								57 58
							 | 
							lttrid | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  ¬  𝐴  =  𝐵 )  →  ( 𝐵  <  𝐴  ↔  ¬  ( 𝐵  =  𝐴  ∨  𝐴  <  𝐵 ) ) )  | 
						
						
							| 60 | 
							
								56 59
							 | 
							mpbird | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  <  𝐴 )  | 
						
						
							| 61 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  ℂ  | 
						
						
							| 62 | 
							
								
							 | 
							eqid | 
							⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld )  | 
						
						
							| 63 | 
							
								62
							 | 
							cnfldtop | 
							⊢ ( TopOpen ‘ ℂfld )  ∈  Top  | 
						
						
							| 64 | 
							
								
							 | 
							rest0 | 
							⊢ ( ( TopOpen ‘ ℂfld )  ∈  Top  →  ( ( TopOpen ‘ ℂfld )  ↾t  ∅ )  =  { ∅ } )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							ax-mp | 
							⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ∅ )  =  { ∅ }  | 
						
						
							| 66 | 
							
								65
							 | 
							eqcomi | 
							⊢ { ∅ }  =  ( ( TopOpen ‘ ℂfld )  ↾t  ∅ )  | 
						
						
							| 67 | 
							
								62 66 66
							 | 
							cncfcn | 
							⊢ ( ( ∅  ⊆  ℂ  ∧  ∅  ⊆  ℂ )  →  ( ∅ –cn→ ∅ )  =  ( { ∅ }  Cn  { ∅ } ) )  | 
						
						
							| 68 | 
							
								61 61 67
							 | 
							mp2an | 
							⊢ ( ∅ –cn→ ∅ )  =  ( { ∅ }  Cn  { ∅ } )  | 
						
						
							| 69 | 
							
								
							 | 
							cncfss | 
							⊢ ( ( ∅  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ∅ –cn→ ∅ )  ⊆  ( ∅ –cn→ ℂ ) )  | 
						
						
							| 70 | 
							
								61 19 69
							 | 
							mp2an | 
							⊢ ( ∅ –cn→ ∅ )  ⊆  ( ∅ –cn→ ℂ )  | 
						
						
							| 71 | 
							
								68 70
							 | 
							eqsstrri | 
							⊢ ( { ∅ }  Cn  { ∅ } )  ⊆  ( ∅ –cn→ ℂ )  | 
						
						
							| 72 | 
							
								2
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐺  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐵  <  𝐴 )  | 
						
						
							| 74 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 75 | 
							
								4
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ* )  | 
						
						
							| 76 | 
							
								75
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 77 | 
							
								
							 | 
							icc0 | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 [,] 𝐵 )  =  ∅  ↔  𝐵  <  𝐴 ) )  | 
						
						
							| 78 | 
							
								74 76 77
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( ( 𝐴 [,] 𝐵 )  =  ∅  ↔  𝐵  <  𝐴 ) )  | 
						
						
							| 79 | 
							
								73 78
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( 𝐴 [,] 𝐵 )  =  ∅ )  | 
						
						
							| 80 | 
							
								79
							 | 
							mpteq1d | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ∅  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							mpt0 | 
							⊢ ( 𝑥  ∈  ∅  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  =  ∅  | 
						
						
							| 82 | 
							
								81
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( 𝑥  ∈  ∅  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  =  ∅ )  | 
						
						
							| 83 | 
							
								72 80 82
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐺  =  ∅ )  | 
						
						
							| 84 | 
							
								
							 | 
							0cnf | 
							⊢ ∅  ∈  ( { ∅ }  Cn  { ∅ } )  | 
						
						
							| 85 | 
							
								83 84
							 | 
							eqeltrdi | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐺  ∈  ( { ∅ }  Cn  { ∅ } ) )  | 
						
						
							| 86 | 
							
								71 85
							 | 
							sselid | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐺  ∈  ( ∅ –cn→ ℂ ) )  | 
						
						
							| 87 | 
							
								79
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ∅  =  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( ∅ –cn→ ℂ )  =  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 89 | 
							
								86 88
							 | 
							eleqtrd | 
							⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 90 | 
							
								48 60 89
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  ∧  ¬  𝐴  =  𝐵 )  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 91 | 
							
								47 90
							 | 
							pm2.61dan | 
							⊢ ( ( 𝜑  ∧  ¬  𝐴  <  𝐵 )  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 92 | 
							
								15 91
							 | 
							pm2.61dan | 
							⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  |