Metamath Proof Explorer


Theorem cncfiooicclem1

Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. This lemma assumes A < B , the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfiooicclem1.x 𝑥 𝜑
cncfiooicclem1.g 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
cncfiooicclem1.a ( 𝜑𝐴 ∈ ℝ )
cncfiooicclem1.b ( 𝜑𝐵 ∈ ℝ )
cncfiooicclem1.altb ( 𝜑𝐴 < 𝐵 )
cncfiooicclem1.f ( 𝜑𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
cncfiooicclem1.l ( 𝜑𝐿 ∈ ( 𝐹 lim 𝐵 ) )
cncfiooicclem1.r ( 𝜑𝑅 ∈ ( 𝐹 lim 𝐴 ) )
Assertion cncfiooicclem1 ( 𝜑𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 cncfiooicclem1.x 𝑥 𝜑
2 cncfiooicclem1.g 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
3 cncfiooicclem1.a ( 𝜑𝐴 ∈ ℝ )
4 cncfiooicclem1.b ( 𝜑𝐵 ∈ ℝ )
5 cncfiooicclem1.altb ( 𝜑𝐴 < 𝐵 )
6 cncfiooicclem1.f ( 𝜑𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
7 cncfiooicclem1.l ( 𝜑𝐿 ∈ ( 𝐹 lim 𝐵 ) )
8 cncfiooicclem1.r ( 𝜑𝑅 ∈ ( 𝐹 lim 𝐴 ) )
9 limccl ( 𝐹 lim 𝐴 ) ⊆ ℂ
10 9 8 sselid ( 𝜑𝑅 ∈ ℂ )
11 10 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → 𝑅 ∈ ℂ )
12 limccl ( 𝐹 lim 𝐵 ) ⊆ ℂ
13 12 7 sselid ( 𝜑𝐿 ∈ ℂ )
14 13 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ )
15 simplll ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝜑 )
16 orel1 ( ¬ 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) )
17 16 con3dimp ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → ¬ ( 𝑥 = 𝐴𝑥 = 𝐵 ) )
18 vex 𝑥 ∈ V
19 18 elpr ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴𝑥 = 𝐵 ) )
20 17 19 sylnibr ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ { 𝐴 , 𝐵 } )
21 20 adantll ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ { 𝐴 , 𝐵 } )
22 simpllr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
23 3 rexrd ( 𝜑𝐴 ∈ ℝ* )
24 15 23 syl ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ∈ ℝ* )
25 4 rexrd ( 𝜑𝐵 ∈ ℝ* )
26 15 25 syl ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* )
27 3 4 5 ltled ( 𝜑𝐴𝐵 )
28 15 27 syl ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴𝐵 )
29 prunioo ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) )
30 24 26 28 29 syl3anc ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) )
31 22 30 eleqtrrd ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) )
32 elun ( 𝑥 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) )
33 31 32 sylib ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) )
34 orel2 ( ¬ 𝑥 ∈ { 𝐴 , 𝐵 } → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) )
35 21 33 34 sylc ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) )
36 cncff ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
37 6 36 syl ( 𝜑𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
38 37 ffvelrnda ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹𝑥 ) ∈ ℂ )
39 15 35 38 syl2anc ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹𝑥 ) ∈ ℂ )
40 14 39 ifclda ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ∈ ℂ )
41 11 40 ifclda ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ∈ ℂ )
42 1 41 2 fmptdf ( 𝜑𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
43 elun ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) )
44 23 25 27 29 syl3anc ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) )
45 44 eleq2d ( 𝜑 → ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) )
46 43 45 bitr3id ( 𝜑 → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) )
47 46 biimpar ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) )
48 ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
49 fssres ( ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
50 42 48 49 sylancl ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
51 50 feqmptd ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) )
52 nfmpt1 𝑥 ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
53 2 52 nfcxfr 𝑥 𝐺
54 nfcv 𝑥 ( 𝐴 (,) 𝐵 )
55 53 54 nfres 𝑥 ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) )
56 nfcv 𝑥 𝑦
57 55 56 nffv 𝑥 ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 )
58 nfcv 𝑦 ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) )
59 nfcv 𝑦 𝑥
60 58 59 nffv 𝑦 ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 )
61 fveq2 ( 𝑦 = 𝑥 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) )
62 57 60 61 cbvmpt ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) )
63 62 a1i ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) )
64 fvres ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐺𝑥 ) )
65 64 adantl ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐺𝑥 ) )
66 simpr ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) )
67 48 66 sselid ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
68 10 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑅 ∈ ℂ )
69 13 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ )
70 38 adantr ( ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹𝑥 ) ∈ ℂ )
71 69 70 ifclda ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ∈ ℂ )
72 68 71 ifcld ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ∈ ℂ )
73 2 fvmpt2 ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ∈ ℂ ) → ( 𝐺𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
74 67 72 73 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
75 elioo4g ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ ) ∧ ( 𝐴 < 𝑥𝑥 < 𝐵 ) ) )
76 75 biimpi ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ ) ∧ ( 𝐴 < 𝑥𝑥 < 𝐵 ) ) )
77 76 simpld ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ ) )
78 77 simp1d ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 ∈ ℝ* )
79 elioore ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ )
80 79 rexrd ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ* )
81 eliooord ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑥𝑥 < 𝐵 ) )
82 81 simpld ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 < 𝑥 )
83 xrltne ( ( 𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐴 < 𝑥 ) → 𝑥𝐴 )
84 78 80 82 83 syl3anc ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥𝐴 )
85 84 adantl ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥𝐴 )
86 85 neneqd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐴 )
87 86 iffalsed ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) )
88 81 simprd ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 < 𝐵 )
89 79 88 ltned ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥𝐵 )
90 89 neneqd ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝑥 = 𝐵 )
91 90 iffalsed ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) )
92 91 adantl ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) )
93 87 92 eqtrd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = ( 𝐹𝑥 ) )
94 65 74 93 3eqtrd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
95 1 94 mpteq2da ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹𝑥 ) ) )
96 51 63 95 3eqtrd ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹𝑥 ) ) )
97 37 feqmptd ( 𝜑𝐹 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹𝑥 ) ) )
98 ioosscn ( 𝐴 (,) 𝐵 ) ⊆ ℂ
99 98 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ )
100 ssid ℂ ⊆ ℂ
101 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
102 eqid ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) )
103 101 cnfldtop ( TopOpen ‘ ℂfld ) ∈ Top
104 unicntop ℂ = ( TopOpen ‘ ℂfld )
105 104 restid ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) )
106 103 105 ax-mp ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld )
107 106 eqcomi ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ )
108 101 102 107 cncfcn ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
109 99 100 108 sylancl ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
110 6 97 109 3eltr3d ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹𝑥 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
111 96 110 eqeltrd ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
112 104 restuni ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( 𝐴 (,) 𝐵 ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) )
113 103 98 112 mp2an ( 𝐴 (,) 𝐵 ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) )
114 113 cncnpi ( ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
115 111 114 sylan ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
116 103 a1i ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( TopOpen ‘ ℂfld ) ∈ Top )
117 48 a1i ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) )
118 ovex ( 𝐴 [,] 𝐵 ) ∈ V
119 118 a1i ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ∈ V )
120 restabs ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) )
121 116 117 119 120 syl3anc ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) )
122 121 eqcomd ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) )
123 122 oveq1d ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) )
124 123 fveq1d ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
125 115 124 eleqtrd ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
126 resttop ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top )
127 103 118 126 mp2an ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top
128 127 a1i ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top )
129 48 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) )
130 3 4 iccssred ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
131 ax-resscn ℝ ⊆ ℂ
132 130 131 sstrdi ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ )
133 104 restuni ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐴 [,] 𝐵 ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) )
134 103 132 133 sylancr ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) )
135 129 134 sseqtrd ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) )
136 135 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) )
137 retop ( topGen ‘ ran (,) ) ∈ Top
138 137 a1i ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( topGen ‘ ran (,) ) ∈ Top )
139 ioossre ( 𝐴 (,) 𝐵 ) ⊆ ℝ
140 difss ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ
141 139 140 unssi ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ
142 141 a1i ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ )
143 ssun1 ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) )
144 143 a1i ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) )
145 uniretop ℝ = ( topGen ‘ ran (,) )
146 145 ntrss ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) )
147 138 142 144 146 syl3anc ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) )
148 simpr ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) )
149 ioontr ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 )
150 148 149 eleqtrrdi ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) )
151 147 150 sseldd ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) )
152 48 148 sselid ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) )
153 151 152 elind ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) )
154 130 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
155 eqid ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) )
156 145 155 restntr ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) )
157 138 154 117 156 syl3anc ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) )
158 153 157 eleqtrrd ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) )
159 101 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
160 159 a1i ( 𝜑 → ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) )
161 160 oveq1d ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) )
162 103 a1i ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top )
163 reex ℝ ∈ V
164 163 a1i ( 𝜑 → ℝ ∈ V )
165 restabs ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) )
166 162 130 164 165 syl3anc ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) )
167 161 166 eqtrd ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) )
168 167 fveq2d ( 𝜑 → ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) )
169 168 fveq1d ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) )
170 169 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) )
171 158 170 eleqtrd ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) )
172 134 feq2d ( 𝜑 → ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ↔ 𝐺 : ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) )
173 42 172 mpbid ( 𝜑𝐺 : ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ )
174 173 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐺 : ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ )
175 eqid ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) )
176 175 104 cnprest ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∧ 𝐺 : ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) )
177 128 136 171 174 176 syl22anc ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) )
178 125 177 mpbird ( ( 𝜑𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
179 elpri ( 𝑦 ∈ { 𝐴 , 𝐵 } → ( 𝑦 = 𝐴𝑦 = 𝐵 ) )
180 iftrue ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = 𝑅 )
181 lbicc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
182 23 25 27 181 syl3anc ( 𝜑𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
183 2 180 182 8 fvmptd3 ( 𝜑 → ( 𝐺𝐴 ) = 𝑅 )
184 97 eqcomd ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹𝑥 ) ) = 𝐹 )
185 96 184 eqtr2d ( 𝜑𝐹 = ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) )
186 185 oveq1d ( 𝜑 → ( 𝐹 lim 𝐴 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐴 ) )
187 8 186 eleqtrd ( 𝜑𝑅 ∈ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐴 ) )
188 3 4 5 42 limciccioolb ( 𝜑 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐴 ) = ( 𝐺 lim 𝐴 ) )
189 187 188 eleqtrd ( 𝜑𝑅 ∈ ( 𝐺 lim 𝐴 ) )
190 183 189 eqeltrd ( 𝜑 → ( 𝐺𝐴 ) ∈ ( 𝐺 lim 𝐴 ) )
191 eqid ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) )
192 101 191 cnplimc ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺𝐴 ) ∈ ( 𝐺 lim 𝐴 ) ) ) )
193 132 182 192 syl2anc ( 𝜑 → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺𝐴 ) ∈ ( 𝐺 lim 𝐴 ) ) ) )
194 42 190 193 mpbir2and ( 𝜑𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) )
195 194 adantr ( ( 𝜑𝑦 = 𝐴 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) )
196 fveq2 ( 𝑦 = 𝐴 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) )
197 196 eqcomd ( 𝑦 = 𝐴 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
198 197 adantl ( ( 𝜑𝑦 = 𝐴 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
199 195 198 eleqtrd ( ( 𝜑𝑦 = 𝐴 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
200 180 adantl ( ( 𝑥 = 𝐵𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = 𝑅 )
201 eqtr2 ( ( 𝑥 = 𝐵𝑥 = 𝐴 ) → 𝐵 = 𝐴 )
202 iftrue ( 𝐵 = 𝐴 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) = 𝑅 )
203 202 eqcomd ( 𝐵 = 𝐴𝑅 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) )
204 201 203 syl ( ( 𝑥 = 𝐵𝑥 = 𝐴 ) → 𝑅 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) )
205 200 204 eqtrd ( ( 𝑥 = 𝐵𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) )
206 iffalse ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) )
207 206 adantl ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) )
208 iftrue ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = 𝐿 )
209 208 adantr ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = 𝐿 )
210 df-ne ( 𝑥𝐴 ↔ ¬ 𝑥 = 𝐴 )
211 pm13.18 ( ( 𝑥 = 𝐵𝑥𝐴 ) → 𝐵𝐴 )
212 210 211 sylan2br ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → 𝐵𝐴 )
213 212 neneqd ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → ¬ 𝐵 = 𝐴 )
214 213 iffalsed ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) = if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) )
215 eqid 𝐵 = 𝐵
216 215 iftruei if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) = 𝐿
217 214 216 eqtr2di ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → 𝐿 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) )
218 207 209 217 3eqtrd ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) )
219 205 218 pm2.61dan ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) )
220 4 leidd ( 𝜑𝐵𝐵 )
221 3 4 4 27 220 eliccd ( 𝜑𝐵 ∈ ( 𝐴 [,] 𝐵 ) )
222 216 13 eqeltrid ( 𝜑 → if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ∈ ℂ )
223 10 222 ifcld ( 𝜑 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) ∈ ℂ )
224 2 219 221 223 fvmptd3 ( 𝜑 → ( 𝐺𝐵 ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) )
225 3 5 gtned ( 𝜑𝐵𝐴 )
226 225 neneqd ( 𝜑 → ¬ 𝐵 = 𝐴 )
227 226 iffalsed ( 𝜑 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) ) = if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) )
228 216 a1i ( 𝜑 → if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹𝐵 ) ) = 𝐿 )
229 224 227 228 3eqtrd ( 𝜑 → ( 𝐺𝐵 ) = 𝐿 )
230 185 oveq1d ( 𝜑 → ( 𝐹 lim 𝐵 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐵 ) )
231 7 230 eleqtrd ( 𝜑𝐿 ∈ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐵 ) )
232 3 4 5 42 limcicciooub ( 𝜑 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐵 ) = ( 𝐺 lim 𝐵 ) )
233 231 232 eleqtrd ( 𝜑𝐿 ∈ ( 𝐺 lim 𝐵 ) )
234 229 233 eqeltrd ( 𝜑 → ( 𝐺𝐵 ) ∈ ( 𝐺 lim 𝐵 ) )
235 101 191 cnplimc ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺𝐵 ) ∈ ( 𝐺 lim 𝐵 ) ) ) )
236 132 221 235 syl2anc ( 𝜑 → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺𝐵 ) ∈ ( 𝐺 lim 𝐵 ) ) ) )
237 42 234 236 mpbir2and ( 𝜑𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) )
238 237 adantr ( ( 𝜑𝑦 = 𝐵 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) )
239 fveq2 ( 𝑦 = 𝐵 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) )
240 239 eqcomd ( 𝑦 = 𝐵 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
241 240 adantl ( ( 𝜑𝑦 = 𝐵 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
242 238 241 eleqtrd ( ( 𝜑𝑦 = 𝐵 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
243 199 242 jaodan ( ( 𝜑 ∧ ( 𝑦 = 𝐴𝑦 = 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
244 179 243 sylan2 ( ( 𝜑𝑦 ∈ { 𝐴 , 𝐵 } ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
245 178 244 jaodan ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
246 47 245 syldan ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
247 246 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) )
248 101 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
249 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) )
250 248 132 249 sylancr ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) )
251 cncnp ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) )
252 250 248 251 sylancl ( 𝜑 → ( 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) )
253 42 247 252 mpbir2and ( 𝜑𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
254 101 191 107 cncfcn ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
255 132 100 254 sylancl ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
256 253 255 eleqtrrd ( 𝜑𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )