Step |
Hyp |
Ref |
Expression |
1 |
|
cncfiooicclem1.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
cncfiooicclem1.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
3 |
|
cncfiooicclem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
cncfiooicclem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
cncfiooicclem1.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
6 |
|
cncfiooicclem1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
7 |
|
cncfiooicclem1.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
8 |
|
cncfiooicclem1.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
9 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐴 ) ⊆ ℂ |
10 |
9 8
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → 𝑅 ∈ ℂ ) |
12 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |
13 |
12 7
|
sselid |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
14 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ ) |
15 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝜑 ) |
16 |
|
orel1 |
⊢ ( ¬ 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) ) |
17 |
16
|
con3dimp |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → ¬ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
18 |
|
vex |
⊢ 𝑥 ∈ V |
19 |
18
|
elpr |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
20 |
17 19
|
sylnibr |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ { 𝐴 , 𝐵 } ) |
21 |
20
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ { 𝐴 , 𝐵 } ) |
22 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
23 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
24 |
15 23
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ∈ ℝ* ) |
25 |
4
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
26 |
15 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
27 |
3 4 5
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
28 |
15 27
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ≤ 𝐵 ) |
29 |
|
prunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
30 |
24 26 28 29
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
31 |
22 30
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
32 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) ) |
33 |
31 32
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) ) |
34 |
|
orel2 |
⊢ ( ¬ 𝑥 ∈ { 𝐴 , 𝐵 } → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
35 |
21 33 34
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
36 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
37 |
6 36
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
38 |
37
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
39 |
15 35 38
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
40 |
14 39
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
41 |
11 40
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
42 |
1 41 2
|
fmptdf |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
43 |
|
elun |
⊢ ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) |
44 |
23 25 27 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
45 |
44
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
46 |
43 45
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
47 |
46
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) |
48 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
49 |
|
fssres |
⊢ ( ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
50 |
42 48 49
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
51 |
50
|
feqmptd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) ) |
52 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
53 |
2 52
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐺 |
54 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐴 (,) 𝐵 ) |
55 |
53 54
|
nfres |
⊢ Ⅎ 𝑥 ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) |
56 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
57 |
55 56
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) |
58 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) |
59 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑥 |
60 |
58 59
|
nffv |
⊢ Ⅎ 𝑦 ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) |
61 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
62 |
57 60 61
|
cbvmpt |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
63 |
62
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
64 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
67 |
48 66
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
68 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑅 ∈ ℂ ) |
69 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ ) |
70 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
71 |
69 70
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
72 |
68 71
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
73 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
74 |
67 72 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
75 |
|
elioo4g |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
76 |
75
|
biimpi |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
77 |
76
|
simpld |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ ) ) |
78 |
77
|
simp1d |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 ∈ ℝ* ) |
79 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ ) |
80 |
79
|
rexrd |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ* ) |
81 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
82 |
81
|
simpld |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 < 𝑥 ) |
83 |
|
xrltne |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ) → 𝑥 ≠ 𝐴 ) |
84 |
78 80 82 83
|
syl3anc |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ≠ 𝐴 ) |
85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 𝐴 ) |
86 |
85
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐴 ) |
87 |
86
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
88 |
81
|
simprd |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 < 𝐵 ) |
89 |
79 88
|
ltned |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ≠ 𝐵 ) |
90 |
89
|
neneqd |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝑥 = 𝐵 ) |
91 |
90
|
iffalsed |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
93 |
87 92
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
94 |
65 74 93
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
95 |
1 94
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
96 |
51 63 95
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
97 |
37
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
98 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
99 |
98
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
100 |
|
ssid |
⊢ ℂ ⊆ ℂ |
101 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
102 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
103 |
101
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
104 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
105 |
104
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
106 |
103 105
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
107 |
106
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
108 |
101 102 107
|
cncfcn |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
109 |
99 100 108
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
110 |
6 97 109
|
3eltr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
111 |
96 110
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
112 |
104
|
restuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
113 |
103 98 112
|
mp2an |
⊢ ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
114 |
113
|
cncnpi |
⊢ ( ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
115 |
111 114
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
116 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( TopOpen ‘ ℂfld ) ∈ Top ) |
117 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
118 |
|
ovex |
⊢ ( 𝐴 [,] 𝐵 ) ∈ V |
119 |
118
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ∈ V ) |
120 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
121 |
116 117 119 120
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
122 |
121
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
123 |
122
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
124 |
123
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
125 |
115 124
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
126 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ) |
127 |
103 118 126
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top |
128 |
127
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ) |
129 |
48
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
130 |
3 4
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
131 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
132 |
130 131
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
133 |
104
|
restuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐴 [,] 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
134 |
103 132 133
|
sylancr |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
135 |
129 134
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
137 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
138 |
137
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( topGen ‘ ran (,) ) ∈ Top ) |
139 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
140 |
|
difss |
⊢ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ |
141 |
139 140
|
unssi |
⊢ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ |
142 |
141
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
143 |
|
ssun1 |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) |
144 |
143
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
145 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
146 |
145
|
ntrss |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
147 |
138 142 144 146
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
148 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
149 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) |
150 |
148 149
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
151 |
147 150
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
152 |
48 148
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
153 |
151 152
|
elind |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
154 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
155 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) |
156 |
145 155
|
restntr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
157 |
138 154 117 156
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
158 |
153 157
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
159 |
101
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
160 |
159
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
161 |
160
|
oveq1d |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
162 |
103
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
163 |
|
reex |
⊢ ℝ ∈ V |
164 |
163
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
165 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
166 |
162 130 164 165
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
167 |
161 166
|
eqtrd |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
168 |
167
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
169 |
168
|
fveq1d |
⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
170 |
169
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
171 |
158 170
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
172 |
134
|
feq2d |
⊢ ( 𝜑 → ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ↔ 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) ) |
173 |
42 172
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) |
174 |
173
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) |
175 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) |
176 |
175 104
|
cnprest |
⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∧ 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
177 |
128 136 171 174 176
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
178 |
125 177
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
179 |
|
elpri |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } → ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
180 |
|
iftrue |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
181 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
182 |
23 25 27 181
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
183 |
2 180 182 8
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = 𝑅 ) |
184 |
97
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = 𝐹 ) |
185 |
96 184
|
eqtr2d |
⊢ ( 𝜑 → 𝐹 = ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ) |
186 |
185
|
oveq1d |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐴 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |
187 |
8 186
|
eleqtrd |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |
188 |
3 4 5 42
|
limciccioolb |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) = ( 𝐺 limℂ 𝐴 ) ) |
189 |
187 188
|
eleqtrd |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐺 limℂ 𝐴 ) ) |
190 |
183 189
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 limℂ 𝐴 ) ) |
191 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) |
192 |
101 191
|
cnplimc |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 limℂ 𝐴 ) ) ) ) |
193 |
132 182 192
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 limℂ 𝐴 ) ) ) ) |
194 |
42 190 193
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ) |
195 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ) |
196 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ) |
197 |
196
|
eqcomd |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
198 |
197
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
199 |
195 198
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
200 |
180
|
adantl |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
201 |
|
eqtr2 |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐴 ) |
202 |
|
iftrue |
⊢ ( 𝐵 = 𝐴 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) = 𝑅 ) |
203 |
202
|
eqcomd |
⊢ ( 𝐵 = 𝐴 → 𝑅 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
204 |
201 203
|
syl |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → 𝑅 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
205 |
200 204
|
eqtrd |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
206 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
207 |
206
|
adantl |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
208 |
|
iftrue |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) |
209 |
208
|
adantr |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) |
210 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴 ) |
211 |
|
pm13.18 |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 ≠ 𝐴 ) → 𝐵 ≠ 𝐴 ) |
212 |
210 211
|
sylan2br |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → 𝐵 ≠ 𝐴 ) |
213 |
212
|
neneqd |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → ¬ 𝐵 = 𝐴 ) |
214 |
213
|
iffalsed |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) |
215 |
|
eqid |
⊢ 𝐵 = 𝐵 |
216 |
215
|
iftruei |
⊢ if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) = 𝐿 |
217 |
214 216
|
eqtr2di |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → 𝐿 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
218 |
207 209 217
|
3eqtrd |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
219 |
205 218
|
pm2.61dan |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
220 |
4
|
leidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
221 |
3 4 4 27 220
|
eliccd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
222 |
216 13
|
eqeltrid |
⊢ ( 𝜑 → if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
223 |
10 222
|
ifcld |
⊢ ( 𝜑 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ∈ ℂ ) |
224 |
2 219 221 223
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
225 |
3 5
|
gtned |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
226 |
225
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐵 = 𝐴 ) |
227 |
226
|
iffalsed |
⊢ ( 𝜑 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) |
228 |
216
|
a1i |
⊢ ( 𝜑 → if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) = 𝐿 ) |
229 |
224 227 228
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) = 𝐿 ) |
230 |
185
|
oveq1d |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ) |
231 |
7 230
|
eleqtrd |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ) |
232 |
3 4 5 42
|
limcicciooub |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) = ( 𝐺 limℂ 𝐵 ) ) |
233 |
231 232
|
eleqtrd |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐺 limℂ 𝐵 ) ) |
234 |
229 233
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ( 𝐺 limℂ 𝐵 ) ) |
235 |
101 191
|
cnplimc |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐵 ) ∈ ( 𝐺 limℂ 𝐵 ) ) ) ) |
236 |
132 221 235
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐵 ) ∈ ( 𝐺 limℂ 𝐵 ) ) ) ) |
237 |
42 234 236
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) |
238 |
237
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) |
239 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) |
240 |
239
|
eqcomd |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
241 |
240
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
242 |
238 241
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
243 |
199 242
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
244 |
179 243
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
245 |
178 244
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
246 |
47 245
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
247 |
246
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
248 |
101
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
249 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
250 |
248 132 249
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
251 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) ) |
252 |
250 248 251
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) ) |
253 |
42 247 252
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
254 |
101 191 107
|
cncfcn |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
255 |
132 100 254
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
256 |
253 255
|
eleqtrrd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |