| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cncfiooiccre.x | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							cncfiooiccre.g | 
							⊢ 𝐺  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cncfiooiccre.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							cncfiooiccre.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							cncfiooiccre.altb | 
							⊢ ( 𝜑  →  𝐴  <  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							cncfiooiccre.f | 
							⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cncfiooiccre.l | 
							⊢ ( 𝜑  →  𝐿  ∈  ( 𝐹  limℂ  𝐵 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cncfiooiccre.r | 
							⊢ ( 𝜑  →  𝑅  ∈  ( 𝐹  limℂ  𝐴 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑥  =  𝐴  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  𝑅 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  𝑅 )  | 
						
						
							| 11 | 
							
								
							 | 
							cncff | 
							⊢ ( 𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ )  | 
						
						
							| 13 | 
							
								
							 | 
							ioosscn | 
							⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℂ  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ℂ )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld )  | 
						
						
							| 16 | 
							
								4
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ* )  | 
						
						
							| 17 | 
							
								15 16 3 5
							 | 
							lptioo1cn | 
							⊢ ( 𝜑  →  𝐴  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) )  | 
						
						
							| 18 | 
							
								12 14 17 8
							 | 
							limcrecl | 
							⊢ ( 𝜑  →  𝑅  ∈  ℝ )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝑅  ∈  ℝ )  | 
						
						
							| 20 | 
							
								10 19
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑥  =  𝐴 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 22 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝑥  =  𝐴  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑥  =  𝐵  →  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) )  =  𝐿 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylan9eq | 
							⊢ ( ( ¬  𝑥  =  𝐴  ∧  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  𝐿 )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  𝐿 )  | 
						
						
							| 26 | 
							
								3
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ* )  | 
						
						
							| 27 | 
							
								15 26 4 5
							 | 
							lptioo2cn | 
							⊢ ( 𝜑  →  𝐵  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) )  | 
						
						
							| 28 | 
							
								12 14 27 7
							 | 
							limcrecl | 
							⊢ ( 𝜑  →  𝐿  ∈  ℝ )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  𝐿  ∈  ℝ )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantllr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 32 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝑥  =  𝐵  →  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 33 | 
							
								22 32
							 | 
							sylan9eq | 
							⊢ ( ( ¬  𝑥  =  𝐴  ∧  ¬  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 35 | 
							
								12
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ )  | 
						
						
							| 36 | 
							
								26
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 37 | 
							
								16
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 38 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 39 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ )  | 
						
						
							| 40 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eliccre | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 42 | 
							
								38 39 40 41
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 43 | 
							
								42
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 44 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 45 | 
							
								42
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 46 | 
							
								26
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 47 | 
							
								16
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 48 | 
							
								40
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							iccgelb | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  𝑥 )  | 
						
						
							| 50 | 
							
								46 47 48 49
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝐴  ≤  𝑥 )  | 
						
						
							| 51 | 
							
								
							 | 
							neqne | 
							⊢ ( ¬  𝑥  =  𝐴  →  𝑥  ≠  𝐴 )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝑥  ≠  𝐴 )  | 
						
						
							| 53 | 
							
								44 45 50 52
							 | 
							leneltd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝐴  <  𝑥 )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝐴  <  𝑥 )  | 
						
						
							| 55 | 
							
								42
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 56 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝐵  ∈  ℝ )  | 
						
						
							| 57 | 
							
								26
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 58 | 
							
								16
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 59 | 
							
								40
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 60 | 
							
								
							 | 
							iccleub | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ≤  𝐵 )  | 
						
						
							| 61 | 
							
								57 58 59 60
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  ≤  𝐵 )  | 
						
						
							| 62 | 
							
								
							 | 
							neqne | 
							⊢ ( ¬  𝑥  =  𝐵  →  𝑥  ≠  𝐵 )  | 
						
						
							| 63 | 
							
								62
							 | 
							necomd | 
							⊢ ( ¬  𝑥  =  𝐵  →  𝐵  ≠  𝑥 )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝐵  ≠  𝑥 )  | 
						
						
							| 65 | 
							
								55 56 61 64
							 | 
							leneltd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  <  𝐵 )  | 
						
						
							| 66 | 
							
								65
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  <  𝐵 )  | 
						
						
							| 67 | 
							
								36 37 43 54 66
							 | 
							eliood | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 68 | 
							
								35 67
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ )  | 
						
						
							| 69 | 
							
								34 68
							 | 
							eqeltrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 70 | 
							
								31 69
							 | 
							pm2.61dan | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 71 | 
							
								21 70
							 | 
							pm2.61dan | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ )  | 
						
						
							| 72 | 
							
								71 2
							 | 
							fmptd | 
							⊢ ( 𝜑  →  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )  | 
						
						
							| 73 | 
							
								
							 | 
							ax-resscn | 
							⊢ ℝ  ⊆  ℂ  | 
						
						
							| 74 | 
							
								
							 | 
							ssid | 
							⊢ ℂ  ⊆  ℂ  | 
						
						
							| 75 | 
							
								
							 | 
							cncfss | 
							⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 76 | 
							
								73 74 75
							 | 
							mp2an | 
							⊢ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  | 
						
						
							| 77 | 
							
								76 6
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 78 | 
							
								1 2 3 4 77 7 8
							 | 
							cncfiooicc | 
							⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 79 | 
							
								
							 | 
							cncfcdm | 
							⊢ ( ( ℝ  ⊆  ℂ  ∧  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  →  ( 𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ↔  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) )  | 
						
						
							| 80 | 
							
								73 78 79
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ↔  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) )  | 
						
						
							| 81 | 
							
								72 80
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )  |