Step |
Hyp |
Ref |
Expression |
1 |
|
cncfmpt1f.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
2 |
|
cncfmpt1f.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
3 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
6 |
5
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
7 |
4 6
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ℂ ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
9 |
|
cncff |
⊢ ( 𝐹 ∈ ( ℂ –cn→ ℂ ) → 𝐹 : ℂ ⟶ ℂ ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
11 |
10
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℂ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
13 |
7 8 11 12
|
fmptcof |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝐴 ) ) ) |
14 |
2 1
|
cncfco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
15 |
13 14
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |