Metamath Proof Explorer


Theorem cncfmpt1f

Description: Composition of continuous functions. -cn-> analogue of cnmpt11f . (Contributed by Mario Carneiro, 3-Sep-2014)

Ref Expression
Hypotheses cncfmpt1f.1 ( 𝜑𝐹 ∈ ( ℂ –cn→ ℂ ) )
cncfmpt1f.2 ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝑋cn→ ℂ ) )
Assertion cncfmpt1f ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐹𝐴 ) ) ∈ ( 𝑋cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 cncfmpt1f.1 ( 𝜑𝐹 ∈ ( ℂ –cn→ ℂ ) )
2 cncfmpt1f.2 ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝑋cn→ ℂ ) )
3 cncff ( ( 𝑥𝑋𝐴 ) ∈ ( 𝑋cn→ ℂ ) → ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ℂ )
4 2 3 syl ( 𝜑 → ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ℂ )
5 eqid ( 𝑥𝑋𝐴 ) = ( 𝑥𝑋𝐴 )
6 5 fmpt ( ∀ 𝑥𝑋 𝐴 ∈ ℂ ↔ ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ℂ )
7 4 6 sylibr ( 𝜑 → ∀ 𝑥𝑋 𝐴 ∈ ℂ )
8 eqidd ( 𝜑 → ( 𝑥𝑋𝐴 ) = ( 𝑥𝑋𝐴 ) )
9 cncff ( 𝐹 ∈ ( ℂ –cn→ ℂ ) → 𝐹 : ℂ ⟶ ℂ )
10 1 9 syl ( 𝜑𝐹 : ℂ ⟶ ℂ )
11 10 feqmptd ( 𝜑𝐹 = ( 𝑦 ∈ ℂ ↦ ( 𝐹𝑦 ) ) )
12 fveq2 ( 𝑦 = 𝐴 → ( 𝐹𝑦 ) = ( 𝐹𝐴 ) )
13 7 8 11 12 fmptcof ( 𝜑 → ( 𝐹 ∘ ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋 ↦ ( 𝐹𝐴 ) ) )
14 2 1 cncfco ( 𝜑 → ( 𝐹 ∘ ( 𝑥𝑋𝐴 ) ) ∈ ( 𝑋cn→ ℂ ) )
15 13 14 eqeltrrd ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐹𝐴 ) ) ∈ ( 𝑋cn→ ℂ ) )