| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 2 |
1
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 3 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → 𝑆 ⊆ ℂ ) |
| 4 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 5 |
2 3 4
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → 𝑇 ⊆ ℂ ) |
| 7 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ∈ ( TopOn ‘ 𝑇 ) ) |
| 8 |
2 6 7
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ∈ ( TopOn ‘ 𝑇 ) ) |
| 9 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → 𝐴 ∈ 𝑇 ) |
| 10 |
5 8 9
|
cnmptc |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ) ) |
| 11 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 12 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) |
| 13 |
1 11 12
|
cncfcn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑇 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ) ) |
| 14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑇 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ) ) |
| 15 |
10 14
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ 𝑇 ) ) |